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Preface

F inance as a distinct field from economics is generally defined as the science
or study of the management of funds. The creation of credit, savings,

investments, banking institutions, financial markets and products, and risk
management all fall under the purview of finance. The unifying themes in
finance are time, risk, and money.

Mathematical or quantitative finance is the application of mathemat-
ics to these core areas. While simple arithmetic was enough for accounting
and keeping ledgers and double-entry bookkeeping, Louis Bachelier’s doc-
toral thesis, Théorie de la spéculation and published in 1900, used Brownian
motion to study stock prices, and is widely recognized as the beginning of
quantitative finance. Since then, the use of increasingly sophisticated and
specialized mathematics has created the modern field of quantitative finance
encompassing investment theory, asset pricing, derivatives, financial data
science, and the emerging area of crypto assets and Decentralized Finance
(DeFi).

BACKGROUND

This book is the collection of my lecture notes for an elective senior level
undergraduate course on mathematics of finance at NYU Courant. The
mostly senior and some first year graduate students come from different
majors with an even distribution of mathematics, engineering, economics,
and business majors. The prerequisites for the book are the same as the
ones for the course: basic calculus, probability, and linear algebra. The goal
of the book is to introduce the mathematical techniques used in different
areas of finance and highlight their usage by drawing from actual markets
and products.

BOOK STRUCTURE

A simple definition of finance would be the study of money; quantitative
finance could be thought of as the mathematics of money. While reduc-
tive and simplistic, this book uses this metaphor and follows the money

xiii



Trim Size: 6in x 9in Sadr838401 fpref.tex V1 - 03/12/2022 12:18pm Page xiv�

� �

�

xiv PREFACE

across different markets to motivate and introduce concepts and mathemat-
ical techniques.

Bonds

In Chapter 2, we start with the basic building blocks of interest rates and time
value of money to price and discount future cash flows for fixed income and
bond markets. The concept of compound interest and its limit as continuous
compounding is the first foray into mathematics of finance. Coupon bonds
make regular interest payments, and we introduce the Geometric series to
derive the classic bond price-yield formula.

As there is generally no closed form formula for implied calculations
such as implied yield or volatility given a bond or option price, these
calculations require numerical root-solving methods and we present the
Newton-Raphson method and the more robust and popular bisection
method.

The concept of risk is introduced by considering the bond price sensi-
tivity to interest rates. The Taylor series expansion of a function provides
the first and second order sensitivities leading to duration and convexity for
bonds in Chapter 2, and delta and gamma for options in Chapter 6. Similar
first and second order measures are the basis of the mean-variance theory of
portfolio selection in Chapter 3.

In the United States, households hold the largest amount of net worth,
followed by firms, while the U.S. government runs a negative balance and
is in debt. Most of consumer finance assets and liabilities are in the form of
level pay home mortgage, student, and auto loans. These products can still
be tackled by the application of the Geometric series, and we can calculate
various measures such as average life and time to pay a given fraction of the
loan via these formulas. A large part of consumer home mortgage loans are
securitized as mortgage-backed securities by companies originally set up by
the U.S. government to promote home ownership and student loans. The
footprint of these giants in the financial markets is large and is the main
driver of structured finance. We introduce tools and techniques to quantify
the negative convexity risk due to prepayments for these markets.

While the analytical price-yield formula for bonds, loans, and
mortgage-backed securities can provide pricing and risk measures for single
products in isolation, a variety of bonds and fixed income products trade
simultaneously in markets giving rise to different yield and spread curves.
We introduce the bootstrap and interpolation methods to handle yields
curves and overlapping cash flows of multiple instruments in a consistent
manner.
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Stocks, Investments

In Chapter 3, we focus on investments and the interplay between risk-free
and risky assets. We present the St. Petersburg paradox to motivate the
concept of utility and to highlight the problem of investment choice,
ranking, and decision-making under uncertainty. We introduce the concept
of risk-preference and show the personalist nature of ranking of random
payoffs. We present utility theory and its axioms, certainty-equivalent lot-
teries, and different measures of risk-preference (risk-taking, risk-aversion,
risk-neutrality) as characterized by the utility function. Utility functions
representing different classes of Arrow-Pratt measures (CARA, CRRA,
HARA) are introduced and discussed.

The mean-variance theory of portfolio selection draws from the
techniques of constrained and convex optimization, and we discuss and
show the method of Lagrange multipliers in various calculations such as
the minimum-variance portfolio, minimum-variance frontier, and tangency
(market) portfolio. The seminal CAPM formula relating the excess return
of an asset to that of the market portfolio is derived by using the chain rule
and properties of the hyperbola of feasible portfolios.

Moving from equilibrium results, we next introduce statistical tech-
niques such as regression, factor models, and PCA to find common drivers of
asset returns and statistical measures such as the alpha and beta of portfolio
performance. Trading strategies such as pairs trading and mean-reversion
trades are based on these methods. We conclude by showing the use of
recurrence equations and optimization techniques for risk and money
management leading to the gambler’s ruin formula and Kelly’s ratio.

Forwards, Futures

In Chapter 4, we introduce the forward contract as the gateway product to
more complicated contingent claims and options and derivatives. The basic
cash-and-carry argument shows the method of static replication and arbi-
trage pricing. This method is used to compute forward prices in equities
with discrete dividends or dividend yields, forward exchange rate via cov-
ered interest parity, and forward rates in interest rate markets.

Risk-Neutral Option Pricing

Chapter 5 presents the building blocks of the modern risk-neutral pricing
framework. Starting with a simple one-step binomial model, we flesh out
the full details of the replication of a contingent claim via the underlying
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asset and a loan and show that a contingent claim’s replication price can
be computed by taking expectations in a risk-neutral setting. This basic
building block is extended to multiple steps through dynamic hedging of a
self-financing replicating portfolio, leading to martingale relative prices and
the fundamental theorems of asset pricing for complete and arbitrage-free
economies.

Option Pricing

In Chapter 6, we use the risk-neutral framework to derive the Black-
Scholes-Merton (BSM) option pricing formula by modeling asset returns
as the continuous-time limit of a random walk, that is a Brownian motion
with risk-adjusted drift. We recover and investigate the underlying repli-
cating portfolio by considering the option Greeks: delta, gamma, theta.
The interplay between these is shown by applying the Ito’s lemma to the
diffusion process driving an underlying asset and its derivative, leading to
the BSM partial differential equation and its solution via methods from the
classical boundary value heat equations.

We discuss the Cox-Ross-Rubinstein (CRR) model as a popular and
practical computational method for pricing options that can also be used
to compute the price of options with early exercise features via the back-
ward induction algorithm from dynamic programming. For path-dependent
options such as barrier or averaging options, we present numerical models
such as the Monte Carlo simulation models and variance reduction tech-
niques.

Interest Rate Derivatives

Chapter 7 introduces interest rate swaps and their derivatives used in
structured finance. A plain vanilla swap can be priced via a static replication
argument from a bootstrapped discount factor curve. In practice, simple
European options on swaps and interest rate products are priced and
risk-managed via the normal version of Black’s formula for futures. We
introduce this model under the risk-neutral pricing framework and show
the pricing of the mainstream cap/floors, European swaptions, and CMS
products. For complex derivatives, one needs a model for the evolution
of multiple maturity zero-coupon bonds in a risk-neutral framework. We
present the popular Hull-White mean-reverting model for the short rate
and show the typical implementation methods and techniques, such as
the forward induction method for yield curve inversion. We show the
pricing of Bermudan swaptions via these lattice models. We conclude our
discussion by presenting methods for calculating interest rate curve risk
and VaR.
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Exercises and Python Projects

The end-of-chapter exercises are based on real-world markets and products
and delve deeper into some financial products and highlight the details of
applying the techniques to them. All exercises can be solved by using a
spreadsheet package like Excel. The Python projects are longer problems
and can be done by small groups of students as a term project.

It is my hope that by the end of this book, readers have obtained a good
toolkit of mathematical techniques, methods, and models used in financial
markets and products, and their interest is piqued for a deeper journey into
quantitative finance.

—Amir SadrNew York, New York
December 2021
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bp basis points, 1% of 1%, 0.0001
FV future value
IRR internal rate of return
PnL profit and loss
PV present value
YTM yield to maturity
p.a. per annum
DF,D(T) discount factor, today’s value unit payment at future

date T
D(t,T) dicount factor at t for unit payment at T > t
r interest rate
rm compounding interest rate with m compoundings per

year
y yield
APR annual percentage rate – stated interest rate without any

compoundings
APY annual pecentage yield – yield of a deposit taking com-

poundings into consideration: 1 + APY = (1APR∕m)m
for m compoundings per year

CF cash flow
C coupon rate
P,P(C, y,N,m) price of an N-year bond with coupon rate C, paid m times

per year, with yield y
w accrual fraction between 2 dates according to some day

count basis
PClean clean price of a bond = Price − accrued interest
PZ(y,N,M) price of an N-year zero-coupon bond with yield y, m

compoundings per year
PA(C, y,N,m) price of an N-year annuity with annuity rate of C, paid

m times per year, with yield y
PBill(y,T) price of T-maturity Treasury Bill with discount yield y
PV01 present value change due to an ”01” bp change in yield
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PVBP present value change due to a 1 bp change in coupon,
present value of a 1 bp annuity

Bn balance of a level pay loan after n periods
Pn, In principal and interest payments of a level pay loan in the

nth period
PL(C, y,N,m) price of N-year level pay loan with loan rate of C, paid

m times per year, with yield y
AL average life
B′

n balance of a level pay loan after n periods with prepay-
ments

P′
n, I

′
n principal and interest payments of a level pay loan within

the nth period with prepayments
SMM single monthly mortality rate
CPR constant prepayment ratio
s, sn periodic prepayment speed
U(x) utility of wealth x
X ≺ Y lottery Y is preferred to X
cX certainty-equivalent of random payoff X, U(cX) =

E[U(X)]
𝜋A, 𝜋R absolute risk premium, relative risk premium
V, VP, Vi value, value of a portfolio, value of ith asset
Qi,Pi quantity, price
wi weight of ith asset in a portfolio,

∑
iwi = 1

RA return of an asset over a period t: RA = A(t)∕A(0) − 1.
Can be divided by t to give rate of return

RA ∼ (𝜇A, 𝜎A) asset A’s return, with mean 𝜇 and standard deviation 𝜎A
𝜇, 𝜎,C mean vector, standard deviation vector, and covariance

matrix of asset returns
R0 return of a risk-free asset
M,RM market portfolio, return of the market portfolio
𝛽X beta of an asset X, Cov(RX,RM)∕𝜎2

M
x̂ empirical estimate of x
x arithmetic average of n samples of x, 1∕n

∑n
i=1 xi

T forward date, future date
FA(t,T) forward value of asset A at time t for forward date T
VFA(t,T,K) t-value of a forward agreement on asset A for forward

date T and price K
f (t, [T1,T2]) simple (noncompounding) forward rate that can be

locked at t for forward deposit period [T1,T2]. The first
term may be omitted when t = 0.
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fc(t, [T1,T2]) continuously compounding forward rate that can be
locked at t for forward deposit period [T1,T2]. The first
term may be omitted when t = 0.

FX foreign currency exchange rate
rd, rf domestic and foreign interest rates for forward exchange

rate calculations
FX(t,T) the T-forward exchange rate that can be locked at t
A0,A(0) today’s value of an asset A
C0,C(0) today’s value of a contingent claim C
𝜔 generic random sample path
M(t),M(t, 𝜔) value of a money-market account at time t along sample

path 𝜔

N(𝜇, 𝜎2) normal or Gaussian random variable with mean 𝜇 and
variance 𝜎2

LN(𝜇, 𝜎2) lognormal random variable whose log is N(𝜇, 𝜎2)
CDF cumulative ditribution function
pdf probability density function
pmf probability mass function
N(x) cumulative distribution function of a standard (N(0,1))

normal random variable, N(x) = 1
√

2𝜋
∫ x
−∞ e−u2∕2du

N′(x) probability density function of a standard normal ran-
dom variable, N′(x) = 1

√
2𝜋

e−x2∕2

BM Brownian motion
B(t),B(t, 𝜔) Brownian motion at time t along sample path 𝜔

𝜎 proportional, lognormal volatility
ATM, ATMF at-the-money spot, at-the-money forward
𝛿(x) Dirac’s delta function, ∫ f (x)𝛿(x − a)dx = f (a)
𝜎N absolute, normalized volatility
CMS constant maturity swap rate
AD, AD(ti, j) Arrow-Debreu price, today’s price of unit payoff at state j

on future date ti
i.i.d. independent and identically distributed
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CHAPTER 1
Finance

While economics as a social science studies the behavior of economic
agents in the generation, acquisition, and expenditure of goods and ser-

vices, finance is focused on the acquisition and management of capital in
financial markets.

Focusing on the end user, finance can be divided into personal finance,
corporate finance, and government finance. Savings, investments, and loans,
such as credit card, student, automobile, and home mortgage, insurance
products, and estate planning are examples of personal finance. The raising
of capital by borrowing and debt or selling shares and equity by a com-
pany and the management of a company’s funds are the focus of corporate
finance. Monetary policy, central banking, tax systems, and the oversight of
the banking sector and financial markets fall under government finance.

1.1 FOLLOW THE MONEY

Using the reductive definition of finance as the study of money, we follow
the money to get our bearings. In accounting, a balance sheet is a snap-
shot of an entity’s (person, corporation, country) net worth or equity: assets
minus liabilities equals equity. Table 1.1 shows a snapshot of the net worth
of the three dominant players in the U.S. economy: households, firms, and
government.

As the table shows, households hold the largest amount of equity, fol-
lowed by firms, while the U.S. government runs a negative balance and is
in debt. Indeed, the U.S. government is the world’s biggest borrower and
routinely borrows money to finance its expenditures. The breakdown of
households’ net worth is shown in Table 1.2.

Bonds, stocks, foreign exchange, commodities, and their derivatives are
the major sectors of financial markets. Tables 1.3 through 1.5 show the mar-
ket size as of year end 2020.

1
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TABLE 1.1 Balance sheet of the United States at
2020 year end.

Sector Net Worth ($Trillions)

Households 123.35
Firms 33.9
Government −26.8

Total 130.46

Source: U.S. Federal Reserve Z.1 Statistical Release.

TABLE 1.2 Households sector balance sheet as of 2020 year end.

Category $Trillions Percentage

Real estate 32.8 24%
Consumer durable goods 6.1 4%
Checking, savings, money market accounts 15.2 11%
Debt securities, bonds 5.1 4%
Equities, mutual funds, investments 79 57%
Misc 1.3 1%

Total assets 139.6 100%

Home mortgage loans 10.9 67%
Credit card, auto loans 4.2 26%
Other loans 1.1 7%

Total liabilities 16.2 100%

Net worth 123.35

TABLE 1.3 Market size ($Trillions).

U.S. World

Bonds 50.1 123.5
Stocks 40.7 93.6
Derivatives 15.8
Foreign Exchange 6.6/day

Sources: World Bank, BIS, SIFMA.
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TABLE 1.4 U.S. bond market ($Trillions).

Type Outstanding debt

Treasury 21.0 42%
Mortgage-related 11.2 22%
Corporate debt 9.8 8%
Municipal 4 8%
Federal agency securities 1.7 3%
Asset-backed 1.5 3%
Money markets 1 2%

Total 50.1

Source: SIFMA.

TABLE 1.5 Global derivatives market size ($Trillions).

Market Gross market value

Interest rate contracts 11.4
Foreign exchange contracts 3.2
Equity-linked contracts 0.8

Source: BIS.

1.2 FINANCIAL MARKETS AND PARTICIPANTS

Households typically earn wages and receive salary from firms, while firms
earn income when households consume their goods and services. The
government collects taxes from households and firms for its expenditures
for defense, government services, infrastructure, public health, and trans-
fer payments such as social security and Medicare. Banks and financial
intermediaries facilitate the transfer of funds between these three sectors:
households and firms deposit their excess funds in banks and earn interest,
and banks avail these funds in the form of consumer and corporate loans.
Other financial intermediaries such as investment banks, insurance com-
panies, and investment companies provide capital and financial services to
firms and individuals.

The capital markets and financial instruments facilitate the flow of funds
between different sectors of the economy. Focusing on the United States, the
bond market is the largest market with capitalization of $50 trillion
at the end of 2020. The U.S. government routinely borrows by issuing
debt in the form of coupon bonds. Similarly corporations finance their
growth by issuing debt in the form of corporate coupon bonds. States
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TABLE 1.6 Market participants and financial products.

Participant Usage Product

Households Custody, banking,
borrowing

Checking and interest
bearing accounts,
credit cards

Home mortgage, auto,
student loan

Level pay loans

Investments Cash, options brokerage
accounts, financial or
robo-advisor advice
for asset allocation

Insurance, estate
planning

Auto, home, life
insurance; annuities

Corporations Financing Bonds, stock issuance
Cash flow management Commercial paper, lines

of credit, swaps
Asset liability

management, interest
rate risk management

Derivatives, interest rate
futures, swaps,
options

Insurers, mortgage servicers Rate risk Swaps, caps, swaptions
Pension plans Asset allocation and

insurance
Derivatives

Hedge funds Investment, speculation Leveraged products,
derivatives, statistical
methods

Banks, financial institutions Financial services All products

States and local
government

Financing Bullet bonds, callable
bonds

Fannie Mae, Freddie Mac Financing, risk
management

Swaps, swaptions,
swapped issuance

U.S. government Financing Bills, notes, bonds
Federal Reserve Monetary policy Repo and reverse,

quantitative easing
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and municipalities also raise capital by issuing debt for infrastructure and
other projects.

Banks and other financial institutions provide home mortgage, auto, and
student loans in the form of level pay loans. These loans and receivables
are in turn bought and securitized as mortgage-backed and asset-backed
securities by companies originally set up by the U.S. government to pro-
mote home ownership and student loans, prominent among them are Fan-
nie Mae (Federal National Mortgage Association), Freddie Mac (Federal
Home Loan Mortgage Corporation), and Sallie Mae (Student Loan Mar-
keting Association).

Corporations raise capital by issuing stock (equity), which is publicly
traded. Households participate in the stock market directly via brokerage
accounts or retirement plans primarily investing in mutual funds and ETFs
(Exchange Traded Funds). The allocation of investments between different
assets or funds is the subject of portfolio selection.

Firms and households use insurance and derivatives markets to mitigate
and manage financial risk. Consumers buy home and auto insurance to pro-
tect against loss. Corporations raise money from the capital markets and
manage their interest rate exposure through interest rate swaps and deriva-
tives. Producers use commodity futures and derivatives to manage price risk,
and pension plans and investors use equity derivatives for risk management
and speculation.

1.3 QUANTITATIVE FINANCE

Households, corporations, governments, and financial firms, such as
commercial and investment banks, insurance companies, asset management
companies, and hedge funds, all participate in financial markets and employ
a variety of products and increasingly sophisticated quantitative methods
(see Table 1.6). The mathematics includes results and techniques from
calculus, linear algebra, probability and statistics, numerical methods,
optimization techniques, stochastic processes, differential equations, and
machine learning techniques. In the following chapters, we will introduce
these techniques as used in different markets and financial products.
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CHAPTER 2
Rates, Yields, Bond Math

The trade-off between delayed versus immediate consumption and the cost
of waiting is a core concept in economics and finance. Discounting the

future cash flows of a financial instrument such as a stock or a bond via an
appropriate rate is fundamental to their pricing. The time value of money
and discounting are captured by interest rates.

2.1 INTEREST RATES

Consider an investor with $100 who invests it by depositing it in an
interest-bearing bank account for one year at an annual interest rate r = 4%.
In one year’s time, the investor will receive the original amount deposited,
$100, and the interest amount of $4($100 × 4%), for a total of $104. The
interest payment is in compensation for use of the money, i.e., the investor
could have used the $100 for other purposes, maybe a lucrative investment,
and, hence, needs to be compensated for this opportunity cost. Viewed
another way, the investor is lending funds to the bank for one year and
should be compensated for availing this loan.

Interest rates are generally quoted on an annualized basis, for example
4% per annum in the above case. For a loan of size A, the interest amount
based on the annualized interest rate of r for a duration of T years is
A × r × T, and the Future Value is the initial size plus the interest

FV = A + A × r × T = A × (1 + rT) (2.1)

For example, the FV of an initial amount A = $100 in 3 months (T = 3∕12)
at the simple interest rate of 4% per annum is

$100 ×
(

1 + 4% × 3
12

)

= $101

7
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The above case is an example of a noncompounding interest rate.
Another way of getting compensated is by compounded interest where the
investor earns compound or interest on interest. For example, for a 2-year
deposit at the same interest rate of r = 4% per annum, but compounded
annually, the 1-year future value of $100 is $104, and the 2-year future
value is $104 × (1 + 4%) = $108.16:

$100 × (1 + 4%)2 = $108.16

Out of the $8.16 in interest, $8 is the interest for two years, $4 for each year,
and the extra $0.16 is due to the compounding effect: receiving interest on
interest.

In general, the Future Value FV of loan A at an interest rate of r per
annum, compounded m times a year for N whole compounding periods is

FV = A ×
(

1 + r
m

)N
(2.2)

For example, if m = 1, we have annual compounding FV = A × (1 + r)N,
and N is the number of years until loan maturity T. If m = 2, we have
semi-annual compounding FV = A × (1 + r∕2)N, and N = 2 × T is the num-
ber of whole semiannual periods until loan maturity T years from now (see
Table 2.1). The term r∕m is known as the periodic interest rate.

2.1.1 Fractional Periods

The compound interest Formula 2.2 can be generalized to incorporate loan
durations that are not a whole number of compounding periods away. Let T
be the number of years—including fractions of years—between the invest-
ment date. We can generalize Formula 2.2 to

FV = A ×
(

1 + r
m

)m×T
(2.3)

TABLE 2.1 Future Value of $100,000 for a 2 year (T = 2) loan with r = 4% per
annum.

Number of Periodic Future
Compoundings Periods Interest Value
Per Year (m) (N = T × m) Rate (r∕m) FV(T) Interest

0=Simple $108,000 $8,000
1=Annual 2 4% $108,160 $8,160
2=Semiannual 4 2% $108,243.22 $8,243.22
4=Quarterly 8 1% $108,285.67 $8,285.67
12=Monthly 24 4%/12 $108,314.30 $8,314.30
365=Daily 2 × 365 4%/365 $108,328.23 $8,328.23
∞=Continuous ∞ $108,328.71 $8,328.71



Trim Size: 6in x 9in Sadr838401 c02.tex V1 - 03/18/2022 3:28pm Page 9�

� �

�

Rates, Yields, Bond Math 9

For example, the future value of A = $100,000 in 9 months (T = 0.75) for
a semiannual (m = 2) compounded interest rate of 4% per annum is

FV = $1,000,000 ×
(

1 + 4%
2

)2×0.75

= $103,014.95

while the future value of A = $100,000 in 3 months (T = 0.25) for a semi-
annual compounded interest rate of 4% per annum is

FV = $100,000 ×
(

1 + 4%
2

)2×0.25

= $100,995.05

The first case’s interest of $3,014.95 is for 1.5 semiannual compounding
periods, and exceeds the simple interest of $3,000 = $100,000 × 4% × 3∕12
due to compounding, while the second case is for a half (semiannual) com-
pounding period.

Similarly, for noncompounding simple rates, we can let T be a frac-
tion of a year. For example, the future value of A = $100,000 in 2 months
(T = 2∕12) at the simple interest rate of 4% p.a. is

FV = $1,000,000 ×
(

1 + 4% × 2
12

)

= $100,666.67

2.1.2 Continuous Compounding

As we compound more often, in the limit we reach continuous compounding
and Formula 2.3 becomes

FV = lim
m→∞

A ×
(

1 + r
m

)m×T
= A × erT

While seldom used in real-world loans and deposits, continuously com-
pounded interest rates provide an easy way to derive analytical formulas
when interest rates are not the primary object of study, for example in
investment analysis or option pricing for equities.

2.1.3 Discount Factor, PV, FV

Given an interest rate r for a time horizon T, let FV(T) be the future value
of unit (A = 1) currency. For a simple (noncompounding) interest rate r,
we have

FV(T) = 1 + rT (2.4)

and for any given initial amount A, its future value is then simply A × FV(T).
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10 MATHEMATICAL TECHNIQUES IN FINANCE

Alternatively, we can ask how much we need to invest today at the pre-
vailing interest rates to receive unit currency at some future date T:

A × (1 + rT) = 1

In this case, we are setting the future value to 1 and solving for A, the Present
Value, PV(T), of unit currency to be received at T. It is easy to see that

PV(T) = 1
1 + rT

= 1∕FV(T)

for simple interest rates. In the above formula, we are using the interest rate
to discount the future unit cash flow to compute its today’s value, and PV(T)
is also known as the Discount Factor, D(T) = PV(T).

For compounding interest rates, we have

D(T) = 1
(1 + r∕m)mT

which for continuously compounded interest rates becomes

D(T) = e−rT

The graph of D(T) versus T is known as the discount factor curve and
is a decreasing (non-increasing) function of T for positive (non-negative)
interest rates. Given a discount factor curve, we compute today’s price of a
series of known cash flows C1, . . . ,CN at futures dates T1, . . . ,Tn, as

N∑

i=1

Ci × D(Ti)

2.1.4 Yield, Internal Rate of Return

The interest rate of a loan describes the amount and timing of the interest
payments for a loan and is fixed at the inception of a loan, usually reflect-
ing prevailing market interest rates at the time. For a given loan of size
A and interest rate r, one can know with certainty the future interest and
principal cash flows: $100 in, $100(1 + rT) out at T if we use the simple
interest rate r.

On the other hand, given the future cash flows of an investment (FV)
and its today’s value (PV), we can ask for the interest rate r in a cash flow
equivalent loan that would have given us the same cash flows. The interest
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rate for this equivalent hypothetical loan is called Internal Rate of Return
(IRR) or Yield to Maturity (YTM) or simply yield. Said another way,
the yield is the discounting rate that will recover today’s price of future
cash flows.

For example, suppose there is an investment that for $100 today will pay
$102 in six months (T = 0.5). We can ask what is the yield of this investment,
i.e., the implied or equivalent interest or discounting rate that would have
given us the same FV = 102 for PV = 100. The yield, just like the interest
rate, can be quoted in various ways:

1. Simple (add-on, noncompounding) yield: Solve for 100(1 + y∕2) = 102.

y = (FV∕PV − 1)∕T, T = 1∕2

2. Periodically compounded yield: Solve for 100(1 + y∕m)mT = 102.

y = m[(FV∕PV)1∕(Tm) − 1], T = 1∕2

3. Continuously compounded yield: Solve for 100ey∕2 = 102.

y = ln(FV∕PV)∕T, T = 1∕2

4. Discount yield: Solve for 100= 102(1 − y/2).

y = (1 − PV∕FV)∕T, T = 1∕2

Note that the same cash flows, PV = 100, FV = 102, can give rise to
yields quoted in different ways. When comparing the yields of different
investments, one needs to use a consistent convention (semiannual, contin-
uous, simple, . . . ) to ensure we are comparing apples to apples.

2.2 ARBITRAGE, LAW OF ONE PRICE

An arbitrage opportunity is the ability to generate profits with no risk. For
example, two financial instruments with identical futures cash flows should
have the same price today. Otherwise, one can sell the more expensive instru-
ment and buy the cheaper instrument, generating a positive amount today
with zero liability in the future: whatever the future cash flows of the instru-
ment one had sold and need to be paid will be offset by the instrument one
has bought and which generate the identical cash flows. Lack of arbitrage
then leads to both instruments having the same price today.
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12 MATHEMATICAL TECHNIQUES IN FINANCE

The usual arbitrage pricing argument relates the future cash flows of a
financial instrument to those of a risk-free investment, for example, deposit-
ing money at a bank account and receiving the simple interest rate r for a
future date T. We use the relationship

D = D(T) = 1
1 + rT

as today’s value of receiving 1 at T. We assume we can invest (lend) and
borrow for T at the same rate r.

Now consider the simplest financial instrument whose only cash flow is
payment of 1 at T, and let P be today’s price of this instrument. If P < D,
then we could borrow D at the rate r and pay P for the instrument, and be
left with a positive amount D − P > 0. At time T we will receive 1 from the
instrument, while we owe D × (1 + rT) = 1 to whoever lent it to us. These
future cash flows exactly offset, and we have therefore made a profit today
of D − P with no risk.

Alternatively, let P > D. In this case, we sell the instrument for P and
lend/invest part of it, D, at r. Again, we are left with a positive amount
P − D > 0. At time T, we will receive D × (1 + rT) = 1 from whoever we
lent to, and need to pay 1 to whoever we sold the instrument to. These two
cash flows exactly offset and we have made a profit of P − D with no risk.

Therefore, in an arbitrage-free economy, today’s price, D, of the
instrument consisting of receiving 1 at T cannot be different than D(T) =
1∕(1 + rT).

Note that when P < D, the instrument’s price is too low and its yield
too high, and we can lend at this high yield while financing/borrowing at
the lower rate r. On the other hand, when P > D, the price is too high and
the yield too low, so we borrow at this low yield and lend/invest at the
higher rate r. Lack of arbitrage can then be expressed as absence of bor-
row low, lend high opportunities. If such opportunities exist, then investors
will start buying the cheap (high-yield) instrument and drive up its price,
or sell the expensive (low-yield) instrument and drive down its price to the
no-arbitrage price.

2.3 PRICE-YIELD FORMULA

Discount factors are the fundamental building blocks for valuing fixed
income securities. Given a series of known cash flows (C1, . . . ,CN) to
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be received at various times (T1, . . . ,TN) in the future, if we know the
discount factor D(Ti) for each payment date Ti, then today’s value of this
package is

PV(portfolio of cash flows) =
N∑

i=1

CiD(Ti)

For example, today’s price P of a T-year bond paying an annualized coupon
rate C m times a year (so N = T × m payments left) is

P =
N∑

i=1

C
m

D(Ti) + D(TN)

The standard pricing formula for bonds uses a compounded yield y with
the same compounding frequency as the coupons. So, D(Ti) = 1∕(1 + y∕m)i
results in the classical bond pricing formula

P(C, y,N,m) = P =
N∑

i=1

C∕m

(1 + y∕m)i
+ 1

(1 + y∕m)N

= C
y

(

1 − 1
(1 + y∕m)N

)

+ 1
(1 + y∕m)N

(2.5)

where we have used the Geometric Series Formula for
∑N

i=m 𝛼i. If 𝛼 = 1, the
sum is simply N − m + 1. For 𝛼 ≠ 1, we observe

(𝛼m + 𝛼m+1 + . . . + 𝛼N)(1 − 𝛼)

= (𝛼m + 𝛼m+1 + . . . + 𝛼N)

− (𝛼m+1 + . . . + 𝛼N + 𝛼N+1)

= 𝛼m − 𝛼N+1

N∑

i=m

𝛼i = 𝛼m − 𝛼N+1

1 − 𝛼

Formula 2.5 is for when there are N = T × m whole future coupon peri-
ods left. When valuing a bond between coupon payment dates, the dis-
count factors are modified as D(Ti) = 1∕(1 + y∕m)i−w where w measures
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the accrued fraction (measured using some day-count convention: Act/Act,
Act/365, ...) of the current coupon period

P(C, y,N,m) =
N∑

i=1

C∕m

(1 + y∕m)i−w
+ 1

(1 + y∕m)N−w

= 1
(1 + y∕m)−w

[
N∑

i=1

C∕m

(1 + y∕m)i
+ 1

(1 + y∕m)N

]

= (1 + y∕m)w
[

C
y

(

1 − 1
(1 + y∕m)N

)

+ 1
(1 + y∕m)N

]

(2.6)

EXAMPLE 1

Consider a 2-year bond issued on 31-Dec-2020 with maturity date of
31-Dec-2022 and semiannual coupon rate of 4% per annum. Its semi-
annual coupon dates are 30-Jun-2021, 31-Dec-2021, 30-Jun-2022,
and 31-Dec-2022. Assume we are valuing the bond on 8-Oct-2021.
In this case, there are three remaining coupons, and the fraction of
time using the Actual/Actual method is

w =
Number of days between 30-Jun-2021 and 8-Oc-2021

Number of days between 30-Jun-2021 and 31-Dec-2021

= 100
184

= 0.54348

If the yield is 3.25%, the price of the bond using Formula 2.6 is

P =
(

1 + 0.0325
2

)0.54348

[
0.04

2

(

1 − 1
(1 + 0.0325∕2)3

+ 1
(1 + 0.325∕2)3

)]

= 1.0197889 = 101.97889%

If you were to purchase $100,000 face value of this bond, you will
have to pay $101,978.89 to receive the remaining cash flows: three
semiannual coupons of $2,000 on 31-Dec-2021, 30-Jun-2022, and
31-Dec-2022, and $100,000 on 31-Dec-2022.
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FIGURE 2.1 Bond price versus yield with coupon rate = 2% p.a.

Figure 2.1 shows the graph of the price as a function of YTM. As can
be seen, when YTM equals the coupon rate, the price of the bond is Par
(100%). When C > y, the price is greater than 100%, resulting in a premium
bond. When C < y, the price is less than 100%, resulting in a discount bond.
Finally, note that as yields approach zero, then the price of a bond simply
becomes the sum of the remaining cash flows with no discounting.

2.3.1 Clean Price

Formula 2.6 is known as the Dirty (Invoice/Gross/Full) Price of a bond, that
is, how much cash is needed to purchase this bond. The graph of the dirty
price of a bond versus remaining time to maturity is shown in Figure 2.2.
As time goes by, since one is receiving the same cash flows except earlier,
the value increases. Right after any coupon payment the value drops by the
periodic coupon amount since there is one less coupon remaining.

While the dirty price of a bond is discontinuous, for bond traders
focused on quoted price of a bond, this drop in price—while real in terms
of PV of remaining cash flows—is artificial in terms of worthiness/value of
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FIGURE 2.2 Price of bond versus remaining years to maturity.

a bond, and they prefer a smoother measure. By subtracting the accrued
interest, wC∕m, from the dirty price, one arrives at the Clean/Quoted Price

PClean = (1 + y∕m)w
[

C
y

(

1 − 1
(1 + y∕m)N

)

+ 1
(1 + y∕m)N

]

− w
C
m

(2.7)

In Example 1, the clean price of the bond is

1.0197889 − 0.54348 × 0.04
2

= 1.0089194 = 100.89194%

Even though the clean price is quoted, the amount paid for the bond uses
the true economic value of the remaining cash flows, that is, the dirty price
of the bond.

Figure 2.3 shows the evolution of the clean price for a 2-year, 4% semi-
annual coupon bond as we get closer to maturity while holding yields con-
stant for three yield scenarios: y = 5% leading to a discount bond (C < y),
y = 3% leading to a premium bond (C > y), and y = 4% leading to a par
(C = y) bond. Notice the Pull-to-Par Effect for the bond regardless of the
assumed yield scenario: A discount bond gets pulled up to par, while a pre-
mium bond gets pulled down to par.
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FIGURE 2.3 Pull to par effect for a 2-year, 4% semiannual coupon bond.

2.3.2 Zero-Coupon Bond

If the coupon rate is zero, C = 0, then the only cash flow is the principal
repayment at maturity versus the amount paid for it, and the bond is aptly
called a zero-coupon bond. Since for one unit of face value, its only future
cash flow is unit payment at maturity, its price is simply the discount factor

PZ(y,N,m) = D(T) = 1
(1 + y∕m)N−w

(2.8)

2.3.3 Annuity

An annuity is a financial product that pays a series of regular cash flows to
the owner and variants of it are widely offered by insurance companies as
retirement and estate planning products. For example, a $1,000,000 5-year
annuity with monthly payments of 3% per annum pays

$1,000,000 × 3%
12

= $2,500
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each month for the next five years (60 payments). As opposed to a
coupon bond, an annuity does not have a final principal payment, and the
$1,000,000 is called a notional principal.

Using a compounding yield with the same frequency as the payments,
the price of an annuity, PA(C, y,N,m), with N periodic payments with an
annuity rate of C per annum paid m times a year is

PA(C, y,N,m) =
N∑

i=1

C∕m

(1 + y∕m)i
= C

y

(

1 − 1
(1 + y∕m)N

)

Note that a coupon bond can be considered as a combination of an annuity
and a zero-coupon bond (see Figure 2.4).

4%
2

100%

Coupon Bond

100%

Zero-Coupon Bond

Annuity

0 6m 1y 1.5y 2y

0 6m 1y 1.5y 2y

0 6m 1y 1.5y 2y

4%
2

4%
2

4%
2

4%
2

4%
2

4%
2

4%
2

FIGURE 2.4 Cash flows of a 2-year 4% semiannual coupon bond versus a 2-year 4%
semiannual annuity versus a 2-year zero-coupon bond.
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2.3.4 Fractional Years, Day Counts

The calculation of fractions of years between two arbitrary dates can
be thorny and nuanced, and different day-count conventions are used
in practice. The most obvious way to calculate a fraction of a year is to
compute the number of days in the relevant period and divide it by 365,
giving rise to the Actual/365 method. A variant used for U.S. money-market
instruments—instruments with one year or less in maturity—is to divide
the number of days by 360 instead of 365, Actual/360.

The Act/365 method, however, runs into trouble for leap years (when
February has 29 days instead of 28), which happens every four years when
the year is a multiple of 4, unless the year is a multiple of 100 but not a mul-
tiple of 400 (the year 2000 was a leap year while 1900 was not). One remedy
could be to ignore the leap day(s) in a period, giving rise to Actual/365 No
Leap (Act/365 NL). This method is used for Japanese government bonds.

Another method to tackle leap years is to divide the interest period into
annual or fractions thereof, or subperiods, and divide the number of days in
each subperiod by 365 or 366 depending on whether the subperiod is part of
a leap year. Adding up the fractions for each subperiod gives the fraction of
the year for the whole period. This is the method prescribed by International
Swap Dealers Association (ISDA) for interest calculations in swap markets
and is commonly referred to as Actual/Actual ISDA.

None of the above methods in general provides a whole fraction of a
year for one or more whole months. For example, one would expect that
the fraction of a year from the nth (say 15th) day of a month to the nth day
of the next month should be 1/12. But unless the starting month has exactly
30 days (April, June, September, and November), this will not be the case.
To resolve this, the 30/360 method is based on assuming each month has
30 days, and is computed as

360 × (y2 − y1) + 30 × (m2 − m1) + (d2 − d1)

divided by 360 for the calculation period [y1∕m1∕d1, y2∕m2∕d2]. While this
might seem a straight-forward process, it introduces nuances when month
ends are considered, and has led to different variants to tackle them. The
most common variant is: if d2 = 31 and d1 = 30,31, change d2 to 30. If
d1 = 31, change d1 to 30. Having made these changes, apply above formula.

Finally, a common method to calculate the accrual fraction for accrued
interest and discounting for bonds paying a periodic interest rate (m times a
year) is to divide the actual number of days during the fractional period by
the actual number of days in the full coupon period, resulting in a number
between 0 and 1. This method is also called Actual/Actual and mainly used
for bonds Actual/Actual Bond (see Table 2.2).
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TABLE 2.2 Interest for principal of $1,000,000 and interest rate r = 4% per year for
the 3-month period [2019-Dec-15 2020-Mar-15], which includes the 2020-02-29
leap day. For Act/Act ISDA, the period is broken into two subperiods:
[2019-Dec-15, 2020-Jan-01] (17 days) and [2020-Jan-01, 2020-Mar-15] (74 days).
For Act/Act Bond, it is assumed that semiannual coupon dates are December 15th
and May 15th, hence, 183 days in current coupon period.

Day Count N D N/D Interest ($)

Act/360 91 360 0.25278 10,111.11
Act/365 91 365 0.24932 9,972.60
Act/365 NL 90 365 0.24585 9,863.01
Act/Act ISDA 17,74 365,366 0.24876 9,950.45
30/360 90 360 0.25 10,000.00
Act/Act Bond 91 183 × 2 0.24863 9,945.36

Note that when calculating the number of days between two dates, the
number includes the begin date and excludes the end date, effectively count-
ing the number of nights between two dates. For example, the number of
days between Monday and Tuesday is one, i.e., one night (Monday).

2.3.5 U.S. Treasury Securities

The U.S. Treasury routinely issues short-term (4-week, 8-week, 13-week,
26-week, and 52-week) zero-coupon bonds known as Treasury Bills
(T-Bills). T-Bill yields are quoted using a discount yield

PBill(y,T) = 1 − y × T

where T is calculated via the Act/360 method. For example, if for settle-
ment date 8-Oct-2021 the discount yield of a 26-week (“6 month”) T-Bill
maturing on 8-Apr-2022 is 2%, its price is calculated as

PBill = 1 − 0.02 ×
Number of days between 8-Oct-2021 and 8-Apr-2022

360

= 1 − 0.02 × 182
360

= 0.989889 = 98.9889%

If one were to purchase $100,000 face value of this T-Bill, one would have
to pay $98,988.89 on 8-Oct-2021 to receive $100,000 on 8-Apr-2022.

The U.S. Treasury also regularly borrows money by issuing semiannual
coupon 2-, 3-, 5-, 7-, and 10-year notes and 20- 30-year bonds.
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2.4 SOLVING FOR YIELD: ROOT SEARCH

For single cash flows, one can write a formula for the yield as a function
of price. However, for products with multiple cash flows like bonds and
annuities, the price-yield formula cannot be inverted easily and one has to
use a root search method to compute the implied yield for a given price.

The root search problem for a function f is solving for x so that f (x) = 0.
The related problem of finding x where f (x) = c for a given constant c can
be reduced to finding the root of the function g defined as g(x) = f (x) − c

g(x) = 0 ⇔ f (x) = c

2.4.1 Newton-Raphson Method

The Newton-Raphson method is a numerical algorithm to solve for the root
of a monotonic (increasing or decreasing) function, and is based on the fol-
lowing intuition

f (x) − f (y) ≈ f ′(x) × (y − x)

where f ′(x) denotes the derivative of f with respect to x

f ′(x) =
df (x)

dx
= lim

h→0

f (x + h) − f (x)
h

The Newton-Raphson method, as shown in Figure 2.5, starts with an initial
guess x0 and using the heuristic

f (xn+1) − f (xn) ≈ f ′(xn) × (xn+1 − xn)

and with the objective f (xn+1) = 0, updates each new guess as follows

xn+1 = xn −
f (xn)
f ′(xn)

2.4.2 Bisection Method

A root search method that does not require f ′(x) is the commonly used bisec-
tion method. The bisection method starts with two bracketing levels [x1,x2]
where f (x1) × f (x2) < 0, i.e., f (x1) and f (x2) have different signs so the root x
where f (x) = 0 is bracketed between x1 and x2. At each step, one calculates
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f(xn)

Slope = fʹ(xn)

Slope = fʹ(xn+1)

f(xn+1)

xn+2 xn+1 xn

FIGURE 2.5 Newton-Raphson method.

f (xMid), where xMid is the halfway point xMid = (x1 + x2)∕2 and updates x1
or x2 as follows:

■ If f (xMid) and f (x1) have the same sign, replace x1 by xMid.
■ If f (xMid) and f (x2) have the same sign, replace x2 by xMid.

After each update, the new bracket is half the width of the previous bracket,
and the bracket exponentially tightens to the root.

In case the initial choices x1,x2 do not bracket the root, one can start
with their midpoint and keep on doubling the range centered around that
midpoint until the root is bracketed. This is always achievable if the function
is strictly monotonic and has a root.

2.5 PRICE RISK

Asset prices and their economic drivers constantly change. When one owns
a financial asset, one is not only interested in its current value, but also how
this value changes due to changing market conditions. The question of how
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much the price changes as the yields change is known as the price sensitiv-
ity or price risk, and can be answered by calculating the derivatives of the
pricing formula.

2.5.1 PV01, PVBP

The main driver for bond prices is the general level of market interest rates.
When market rates rise, the bond’s fixed coupon rate becomes less attrac-
tive relative to new market rates, and the bond value drops accordingly.
Alternatively, when market yields drop, then a bond’s coupon becomes more
attractive and the bond value increases. The sensitivity of a bond price to
changes in interest rates, known as the market risk, is the primary source of
risk to a bond holder. Other risks include credit risk, liquidity risk, inflation
risk, re-investment, and prepayment risk.

It is the standard to consider price changes due to 1 basis point (bp,
0.0001 = 1% of 1%) move in yields/rates, giving rise to PV01: the change
in Present Value of the bond due to 1 basis point change in implied yields:

PV01 = dP
dy

× 0.0001

where dP∕dy is the first derivative of the bond price formula with respect
to yield.

Starting with the bond price-yield formula, P(C, y,N,m), we calculate

dP
dy

= C
y2

(
1

(1 + y∕m)N
− 1

)

+ N
m

C∕y − 1

(1 + y∕m)N+1
(2.9)

The relative or percentage change in price is known as the Modified
Duration

Modified Duration = 1
P

dP
dy

,

and has a unit of years. In bond markets, PV01 and modified duration are
usually defined using −dP∕dy instead of dP∕dy. This is to ensure that a pos-
itive amount signifies a long position, i.e., owning a bond. We will ignore
this market practice.

A similar but not identical concept to PV01, is PVBP : Present Value of
1 bp. This is the change in price due to changing the coupon rate by 1 bp

PVBP = dP
dC

× 0.0001
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where
dP
dC

= 1
y

(

1 − 1
(1 + y∕m)N

)

(2.10)

PVBP is equivalent to PV’ing a 1 bp per annum annuity, paid m times a year,
and can be related to the Annuity Formula

PVBP = PA(C = 0.0001, y,N,m) = 0.0001
y

(

1 − 1
(1 + y∕m)N

)

For par bonds (C = y), receiving 1 bp extra in a coupon is almost equiv-
alent to yields dropping by 1 bp, and PV01 and PVBP are sometimes used
interchangeably in practice. For non-par bonds, however, the difference can
become significant (see Figure 2.6) and the appropriate formula should be
used depending on the application.

2.5.2 Convexity

Looking at the price-yield graph of a bond, we observe that the PV01 at a
given yield is the slope of the curve at that point. We also observe that the

1.85

1.9

1.95

2

2.05

0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 4.0%3.5%

Yield-to-Maturity (YTM)

-PV01 (-dP/dy) PVBP (dP/dC) -1/P dP/dy

FIGURE 2.6 PV01, PVBP, and modified duration of a coupon bond.
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graph is not linear and has a positive curvature, and as bond yields move,
so does the slope or the PV01. We can show (see Exercises) that the price is
a convex function of the yield.

A function f is said to be convex if for any x < y and 0 ≤ w ≤ 1, the
following holds

f (wx + (1 − w)y) ≤ wf (x) + (1 − w)f (y) (2.11)

A strictly convex function is when the right-hand side is strictly larger. A
concave function (also called convex down) has the inequality going the
other way.

The convexity of a bond is a measure of the curvature of the price-yield
graph, and is defined as the second derivative of price with respect to yield,
that is, how PV01 changes as yields move.

Convexity = d2P
dy2

= N(N + 1)
m2

1 − C∕y

(1 + y∕m)N+2

−
2CN∕(my2)
(1 + y∕m)N+1

+ 2C
y3

(

1 − 1
(1 + y∕m)N

)

(2.12)

2.5.3 Taylor Series Expansion

PV01 and convexity can be used to estimate the price change due to a small
change (Δy) in yields via the Taylor Series. For a function of one variable,
f (x), the Taylor Series formula is

f (x + Δx) = f (x) + f ′(x)Δx + 1∕2f ′′(x)(Δx)2 + . . . +
f (n)(x)

n!
(Δx)n + . . . .

where f ′(x) is the first derivative, f ′′(x) the second derivative, f (n)(x) the nth
derivative, and so on.

In practice, we usually just use the first two derivatives, and ignore the
effect of the remaining higher-order terms

f (x + Δx) − f (x) = f ′(x)Δx + 1∕2f ′′(x)(Δx)2 + Higher Order Terms

Considering the price-yield formula for bonds, let h be the number of
bps change in yields. We have

Price change ≈ PV01 × h + 1∕2 × convexity × (h × 0.0001)2.
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In practice, however, one is primarily interested in the PV01, ignoring even
the convexity effect in the above formula except for long maturity bonds, or
for large yield movements.

Price change ≈ PV01 × h

EXAMPLE 2

Let us consider the 10-year bond shown in Table 2.3. For a
$1,000,000 face amount, its cash flows are $20,000 coupon payments
every 6 months for 10 years (20 payments), plus $1,000,000 principal
payment in 10 years. Since its coupon rate of 4% is below the market
yield of 5%, it is trading at a discount: its price of 0.92205419
= 92.205419% is less than 1 = 100% (par), and one needs to pay
$922,054.19 to buy this bond.

TABLE 2.3 Sensitivity measures for three different bonds.

T m N C y P dP∕dy (dP∕dy)∕P dP∕dC d2P∕dy2

2 2 4 4% 3% 1.019272 −1.9507 −1.9139 1.9272 4.758
5 2 10 4% 4% 1 −4.4913 −4.4913 4.4913 23.499

10 2 20 4% 5% 0.922054 −7.4264 −8.0542 7.7946 71.101

If market yields change from 5% to 5.10%, then Δy = 0.0010,
and yields have moved by 10 bps. Using the first two terms of Taylor
Series, we expect the new price to be approximately

P(y = 5.10%) ≈ P(y = 5%) + (−7.4264) × 0.0010 + 1
2
× 71.101

× (0.0010)2

= 0.91466330

If we compare this to the actual price at the new yield, P(y = 5.10%) =
0.91466318, we observe that the approximation error is quite small,
amounting to

$1,000,000 × (0.91466330 − 0.91466318) = $0.12

in market value change for the $1,000,000 face value.
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For a $1,000,000 face value, the PV01 is $1,000,000 ×
(−7.42644) × 0.0001 = −$742.64. Had we just used the PV01
and ignored the convexity effect, we would have estimated the change
in value to be 10 × −$742.64 = −$7,426.44, leading to a new price
estimate of 0.91462775 or a market value of $914,627.75, an error
of −$35.43.

2.5.4 Expansion Around C

Another use of the Taylor Series is to come up with an approximation for
prices or yields when yields are close to the coupon rate. We know that when
C = y, then P(C = y, y,N,m) = 1. If we know the dP∕dy of a bond, we can
approximate a new price or a new yield via the formula

P(y) = P(C + (y − C)) ≈ P(C) + dP
dy

(C) × (y − C)

⇒ P(y) ≈ 1 + dP
dy

(C) × (y − C)

y ≈ C +
P(y) − 1

dP∕dy(C)

For example, for the 5-year C = 4% bond in Table 2.3, dP∕dy = −4.49129.
We can approximate P(4.5%) as

P(4.5%) ≈ 1 + (−4.49129)(4.5% − 4%) = 97.754%

Alternatively, if the bond’s price is 99%, then we can approximate its
yield as

y ≈ 4% + 0.99 − 1
−4.49129

= 4.223%

2.5.5 Numerical Derivatives

For most financial instruments, a closed-form formula does not exist, and the
derivatives are calculated by numerical approximation. For the first deriva-
tive, the usual method is to estimate f ′(x) as

f ′(x) ≈
f (x + h) − f (x)

h

for a small value of h, say h = 10−8.
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The second derivative is usually calculated by the central difference
approximation

f ′′(x) ≈
(f (x + h) − f (x))∕h − (f (x) − f (x − h))∕h

h

=
f (x + h) + f (x − h) − 2f (x)

h2

for small h, say h = 10−6. Care needs to be taken so that the h2 term does
not become too small relative to minimum computer precision (typically
10−16) resulting in arithmetic underflow.

2.6 LEVEL PAY LOAN

While coupon bonds are the main debt instruments for governments and
corporations, most consumer finance (home, auto, student, credit card) loans
are structured as level pay loans. A level pay loan of size B0 with interest
rate of C per annum and paid m times a year (usually monthly, m = 12) has
the following cash flows: starting with loan balance of B0, one makes fixed
(level) periodic payments of size L that covers the periodic interest payment
and pays down some of the balance, so that the loan is paid off after N
periods. For example, for a 30-year home mortgage (backed by property)
loan with monthly payments, N = 360 = 30 × 12.

Starting with loan size B0, let Bi be the remaining balance at the ith
period. At each period, part of L is the interest payment, BiC∕m, and the
remainder is the reduction in the balance:

Bi+1 = Bi − (L − BiC∕m) = Bi(1 + C∕m) − L

By inspecting the first few terms

B1 = B0(1 + C∕m) − L

B2 = B1(1 + C∕m) − L = B0(1 + C∕m)2 − L(1 + C∕m) − L

. . .

we get

Bn = B0(1 + C∕m)n − L
n−1∑

i=0

(1 + C∕m)i

= B0(1 + C∕m)n − L
(1 + C∕m)n − 1

C∕m
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If we want the loan to terminate in N periods, we set BN = 0, and solve
for L

L = B0
(C∕m)(1 + C∕m)N

(1 + C∕m)N − 1
= B0

C∕m

1 − 1∕(1 + C∕m)N
(2.13)

Using Formula 2.13, we can calculate the balance Bn for any period n

Bn = B0
1 − 1∕(1 + C∕m)N−n

1 − 1∕(1 + C∕m)N

To calculate how many periods it takes to pay off 0 ≤ 𝛼 ≤ 1 of the initial
loan, we need to solve

Bn = (1 − 𝛼)B0 ⇒ 1 − 𝛼 =
1 − 1∕(1 + C∕m)N−n

1 − 1∕(1 + C∕m)N

to get

n(𝛼) = N −
ln(1 − (1 − 𝛼)(1 − 1∕(1 + C∕m)N))

ln(1∕(1 + C∕m))

Note that n(1) = N as expected.

EXAMPLE 3

You want to purchase a car costing $30,000, and you are offered a
5-year auto loan at the rate of 4% per annum with monthly payments:
B0 = $30,000,C = 4%,m = 12,N = 60. Your monthly payment is

L = $30,000 ×
0.04∕12

1 − 1∕(1 + 0.04∕12)60
= $552.50

Your first payment at the end of the first month consists of $100 =
$30,000 × 4%∕12 interest and balance payment of $452.50 resulting
in a remaining balance of $29,457.50 at the beginning of the second
month.
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2.6.1 Interest and Principal Payments

Using Formula 2.13, we can solve for the amount of interest In and principal
Pn at each period n (see Figure 2.7). For notation ease, let d = 1∕(1 + C∕m).
We have

(0 ≤ n ≤ N) Bn = B0
1 − dN−n

1 − dN

(0 ≤ n < N) In = C
m

Bn = B0
C
m

1 − dN−n

1 − dN

(0 ≤ n < N) Pn = L − In = B0
C
m

dN−n

1 − dN
(2.14)

(0 ≤ n < N) L = In + Pn = B0
C∕m

1 − dN

Using a constant yield-to-maturity (y) with the same compounding frequency
as the interest payment frequency (m), we can compute the price of a unit
(B0 = 1) loan as a function of yield

PL(C, y,N,m) = L
N∑

n=1

1
(1 + y∕m)n

=
C∕m

1 − 1∕(1 + C∕m)N
1∕(1 + y∕m) − 1∕(1 + y∕m)N+1

1 − 1∕(1 + y∕m)

= C
y

1 − 1∕(1 + y∕m)N

1 − 1∕(1 + C∕m)N
(2.15)

12

In
te

re
s
t 

a
n

d
 P

ri
n

c
ip

a
l 
P

a
y
m

e
n

ts

0

1,000

2,000

3,000

4,000

5,000

6,000

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

1 5 62 3 4 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

R
e
m

a
in

in
g

 B
a
la

n
c
e

Interest Principal Balance [RHS]

FIGURE 2.7 Interest and principal payments of a level pay loan.
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2.6.2 Average Life

As opposed to a bond where the principal is only paid at maturity, a level pay
loan’s principal is paid throughout its lifetime, and instead of maturity, one
can compute its Average Life (AL). At the end of each period n, a portion of
the loan payment is the repayment of principal, Pn, or equivalently Pn is the
amount of principal outstanding for n + 1 periods. Average Life is defined
as the weighted average number of periods that the loan is outstanding per
unit loan (B0 = 1)

AL =
N−1∑

n=0

(n + 1)Pn

Using Formula 2.14 for Pn, we have

AL =
N−1∑

n=0

(n + 1)Pn

=
N−1∑

n=0

(n + 1)C
m

dN−n

1 − dN
, d = 1

1 + C∕m

= N
1 − 1∕(1 + C∕m)N

− m
C

where we have used the identity (see Exercises)

S(x,m,N) =
N∑

n=m

nxn

= mxm − (m − 1)xm+1 − (N + 1)xN+1 + NxN+2

(1 − x)2
(2.16)

leading to
∑

n≥1

nxn = x
(1 − x)2

when |x| < 1. (2.17)

If the Pn’s were constant, say C is almost zero, then Pn = 1∕N, and AL =
(N + 1)∕2. For example, the monthly payments of a 1-year monthly level pay
loan with a very low interest rate are 1/12th of the principal and occur on
month 1, month 2, ..., month 12, resulting in AL = 6.5, halfway between
the sixth and seventh month.
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2.6.3 Pool of Loans

Collection of similar (in maturity and coupon rate) loans are typically
aggregated into a pool to form an asset-backed security/bond and sold to
investors. For example, a mortgage-backed security (MBS) is formed by an
entity buying a collection of individual home mortgage loans from banks,
and issuing a new bond. The most common type of MBS is a pass-through
bond: the payments of the new bond are simply the aggregate of the
payments (principal and interest) of the underlying loans and are passed on
to the bond investors.

2.6.4 Prepayments

A common feature of U.S. home mortgage loans is the ability of the borrower
to prepay—in part or in full—the balance of the loan. For an individual
loan, the prepayment simply accelerates the loan maturity: if we are at the
nth period with balance Bn, paying an extra amount PP (prepayment) in
addition to the scheduled level monthly payment L, the loan jumps k periods
ahead to the period where the balance is Bn+k = Bn − PP.

At the pool level, the usual method to model prepayments is to assume
that at each nth period, a certain amount of underlying loans completely
prepay, so that successive actual balances, B′

n’s, and scheduled balances (no
prepayments), Bn’s, are related as follows

(0 ≤ n < N)
B′

n+1

B′
n

= (1 − sn)
Bn+1

Bn

Using the above relationship, we have

(0 ≤ n ≤ N) B′
n =

[
n−1∏

i=0

(1 − si)

]

Bn

If we assume a constant periodic prepayment rate, si = s, the above expres-
sion simplifies to

(0 ≤ n ≤ N) B′
n = (1 − s)nBn = (1 − s)n 1 − dN−n

1 − dN

where d = 1∕(1 + C∕m), and C∕m is the periodic coupon of the bond. In
the U.S. market, MBS payments are monthly, m = 12, and the periodic
(monthly) prepayment rate s is called single monthly mortality (SMM) rate.
The annualized version of the SMM rate is called constant prepayment rate
(CPR): 1 − CPR = (1 − SMM)12.
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We can similarly relate actual (with prepayments) pass-through interest
payments, I′n, to the scheduled (no prepayments) version

(0 ≤ n < N) I′n = B′
n

C
m

=

[
n−1∏

i=0

(1 − si)

]

Bn
C
m

=

[
n−1∏

i=0

(1 − si)

]

In

= (1 − s)nIn if si = s

= (1 − s)n C
m

1 − dN−n

1 − dN

The total principal payment during nth period is B′
n − B′

n+1. Part of this is
the scheduled principal payment based on the beginning period balance, B′

n,
and the remainder is that period’s prepayment. Since I′n = B′

n
C
m

, we have
the following for the nth cash flow of a pass-through bond with constant
periodic prepayment rate s

(0 ≤ n < N) CFn = (B′
n − B′

n+1) + I′n

= (1 + C∕m)B′
n − B′

n+1

= (1 + C∕m)(1 − s)n 1 − dN−n

1 − dN
− (1 − s)n+1 1 − dN−(n+1)

1 − dN

= (1 − s)n
C∕m + s[1 − (1 + C∕m)dN−n]

1 − dN

Using the above formula for nth cash flow, we can compute the price
of the pass-through bond as a function of a yield and periodic prepayment
speed

P(C, y,N,m, s) =
N−1∑

n=0

CFn

(1 + y∕m)n+1

=
N−1∑

n=0

(1 − s)n

(1 + y∕m)n+1

C∕m + s[1 − (1 + C∕m)dN−n]
1 − dN

= . . .

=
C∕m + s
y∕m + s

1 − ((1 − s)∕(1 + y∕m))N

1 − 1∕(1 + C∕m)N

− s
1 − 1∕(1 + C∕m)N

1∕(1 + C∕m)N − ((1 − s)∕(1 + y∕m))N

(1 + y∕m)∕(1 + C∕m) − (1 − s)
(2.18)
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FIGURE 2.8 A pool of loans with low prepayment speed.

Note that when there are no prepayments, s = 0, the second term vanishes,
and the first term reduces to Formula 2.15. Figures 2.8 and 2.9 show the
effect of prepayments on a pool of loans.

2.6.5 Negative Convexity

Borrowers typically refinance their loans by prepaying when interest rates
are low. Consider having a home mortgage loan with a 4% rate. If interest
rates in general and mortgage rates drop, say to 3%, then it is beneficial for
the homeowner to refinance. On the flip side, the lender will receive the bal-
ance of a loan at a high interest rate (4%) in an environment when rates are
low (3%) and has to reinvest this money at low rates. The effect of faster
prepayments in decreasing rate environments gives rise to the price-yield
relationship for a pass-through bond shown in Figure 2.10: usually con-
vex relationship is changed to a concave one, and is referred to as negative
convexity.
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FIGURE 2.9 A pool of loans with high prepayment speed.
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FIGURE 2.10 Negative convexity due to increased prepayments when rates are low.
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2.7 YIELD CURVE

Most governments finance their infrastructure projects and any deficits
by issuing bonds of various maturities at regularly scheduled auctions.
For example, the U.S. government has monthly 2-year, 3-year, 5-year,
and 7-year and quarterly 10-year and 30-year bond auctions. At each
auction, the government borrows new money by issuing a new N-year bond
(N = 2,3,5,7,10,30). On any day, there are a collection of outstanding (not
yet matured) bonds, each with its own remaining maturity, coupon rate,
price, and issue size. The graph of yield to maturity of government bonds
versus their remaining maturity is known as the government/sovereign
yield curve. Figure 2.11 shows a sample snapshot of the U.S. treasury
yield curve.

Recall that the discount factor, D(T), is today’s value of receiving unit
cash flow at a future date T. The graph of D(T) versus T is the discount
factor curve. Given a discount factor curve, the price of any financial instru-
ment with known cash flows—for example, a coupon bond—is simply the
discounted value of its remaining cash flows, with each cash flow occurring
at T multiplied by D(T).

In general, the market does not provide granular information about the
discount factor curve. For example, a 2-year semiannual bond has cash flows
at four futures dates and its price provides information about four discount
factors, but not enough information about any of the individual discount
factors, i.e., we have one formula and four unknowns. We have previously
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FIGURE 2.11 U.S. Treasury yield curve.
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tackled this problem by assuming flat yields and equating the ith discount
factor to

D(Ti) = 1∕(1 + y∕2)i

While this method allows us to analyze the price-yield relationship and price
sensitivities of a single bond in isolation, it is problematic when considering
the collection of bonds comprising the yield curve. For example, a 2-year
bond has overlapping cash flows with a 3-year bond for the first two years,
and unless the 2-year and 3-year yields, y2, y3, are identical, we are valuing
cash flows with the same payment dates differently. For example

D(1 year) = 1
(1 + y2∕2)2

= 1
(1 + y3∕2)2

which can only happen if y2 = y3.

2.7.1 Bootstrap Method

A standard method to extract the discount factor curve from a collection of
bond prices is the bootstrap algorithm. It proceeds as follows:

1. Arrange the traded market instruments in increasing maturity
(T1,T2, . . . ), and let Pi denote the market price of the ith instrument.

2. D(0) = 1. Starting with the shortest maturity instrument, generate dis-
count factors up to T1, D(t),0 ≤ t ≤ T1, so that the sum of its discounted
cash flows equal its market price, P1.

3. Having generated the discount factor curve up to Tn, the n + 1th instru-
ment might have cash flows that are on or before Tn. Generate new
discount factors D(t),Tn < t ≤ Tn+1, so that the sum of its discounted
cash flows equals its market price, P(Tn+1). In this way, we are not
changing the already constructed curve, and all the previous instruments
preserve their market prices (P1, . . . ,Pn).

2.7.2 Interpolation Method

During each step of the bootstrap method, we are given one new constraint,
market price of the n + 1th instrument, which is a function of discount
factors for many dates. Some of the dates might fall before Tn, but they
don’t necessarily fall on cash flow dates of previous instruments. Also there
could be more than one cash flow date that falls between Tn and Tn+1. In
short, at each bootstrap step, we have one new formula but potentially more
than one unknown variable. The usual approach to resolve this is to focus
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only on the discount factor of the last date, D(Tn+1), and use interpolation
for any other unknown discount factors. Two common interpolation
methods are:

1. Linear in discount factors

(t1 ≤ t ≤ t2) D(t) = D(t1) +
D(t2) − D(t1)

t2 − t1
(t − t1)

= D(t1) + w(D(t2) − D(t1)), w =
t − t1

t2 − t1

2. Linear in log of discount factors

(t1 ≤ t ≤ t2) ln D(t) = ln D(t1) +
ln D(t2) − ln D(t1)

t2 − t1
(t − t1)

D(t) = D(t1)
(

D(t2)
D(t1)

)w

, w =
t − t1

t2 − t1

EXAMPLE 4

Bootstrap with linear interpolation: Let a 2-year, 2.25% semiannual
coupon bond trade at 99.50%, and let a 3-year, 2.75% semiannual
coupon bond trade at 100.50%. The combined cash flow dates for the
two bonds are every six months from today to three years.

Starting with D(0) = 1, we focus on D(2), the maturity of first
bond. We need to solve

0.995 = 2.25%
2

[D(0.5) + D(1) + D(1.5) + D(2)] + D(2)

By linear interpolation, we have

D(0.5) = D(0) + (0.5∕2)(D(2) − D(0))

D(1) = D(0) + (1∕2)(D(2) − D(0))

D(1.5) = D(0) + (1.5∕2)(D(2) − D(0))

So, all we need to solve for is D(2). Algebra or trial and error gives us
D(2) = 0.951368 as shown in Table 2.4.
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TABLE 2.4 Discount factor curve
construction via bootstrap method.

T D(T)

0 D(𝟎)=𝟏.𝟎
0.5 D(0) + .25(D(2) − D(0))
1 D(0) + 0.5(D(2) − D(0))

1.5 D(0) + 0.75(D(2) − D(0))
2 D(𝟐)=?=𝟎.𝟗𝟓𝟏𝟑𝟔𝟖

2.5 D(2) + 0.5(D(3) − D(2))
3 D(𝟑)=?=𝟎.𝟗𝟐𝟔𝟎𝟑𝟐

For the 3-year, 2.75% coupon bond trading at 100.50%, we focus
on D(3). We need to solve

100.50%= 2.75%
2

[D(0.5) + D(1) + D(1.5) + D(2) + D(2.5) + D(3)]

+ D(3)

We already have all the discount factors except D(2.5),D(3), but by lin-
ear interpolation D(2.5) = D(2) + .5(D(3) − D(2)), so there is only one
unknown, D(3). Algebra or trial and error gives us D(3) = 0.926032.

Note that having anchored D(0),D(2),D(3), by interpolation, we
can extract D(t) for any 0 ≤ t ≤ 3 by linear interpolation. For example

D(1.75) = D(0) + (1.75∕2)(D(2) − D(0)) = 0.957447

which would be the model price of a 1.75 year zero-coupon bond.

2.7.3 Rich/Cheap Analysis

We can also come up with the model price or yield of a bond and compare
it to the market price or yield of the bond for a rich/cheap analysis. For
example, using Table 2.4, the cash flow–based model price of a 1-year, 2%
semiannual bond is

2%
2

[D(0.5) + D(1)] + D(1) = 0.99532
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which can be converted to a semiannual yield of 2.477%. If this 1-year
bond’s market price is lower than 99.532%, say it is trading at 99.5% (yield
of 2.509%), it is flagged as too cheap: its yield is higher than what the
model suggests. Alternatively, if its market price is higher, say 99.6% (yield
of 2.407%), it is flagged as too rich.

2.7.4 Yield Curve Trades

Given a yield curve, there are a variety of risks and trades that can be iden-
tified. A parallel shift is when yields for all maturities move by the same
amount, say 10 bps. Using prices and yields in Table 2.3, if there is a 10 bp
parallel shift in the market, the yields of 2-year, 5-year, and 10-year bonds
will be 3.10%, 4.10%, and 5.10%, respectively. For a given portfolio of
bonds, if one wants to be immune to parallel shifts in the market, one can
hedge by ensuring that the portfolio PV01 is zero. For example, the value of
a portfolio of two bonds is V = N1P1 + N2P2 where N1,N2 are the face val-
ues of the 2-year and 10-year bonds and P1,P2, y1, y2 their respective prices
and yields. The PnL is ΔV. To be hedged against parallel shift Δy means
ΔV = 0 when Δy1 = Δy2 = Δy

ΔV = N1ΔP1 + N2ΔP2

≈ N1
dP1

dy1
Δy1 + N2

dP2

dy2
Δy2

= (N1
dP1

dy1
+ N2

dP2

dy2
)Δy

For the above to be zero for a small parallel shift Δy, the following must
hold

N1
dP1

dy1
+ N2

dP2

dy2
= 0

Another measure of the yield curve is the slope. In Table 2.3, we observe
that the 2-year to 10-year slope of the yield curve is 2% (=5%-3%), which
a trader might feel is too steep compared to its historical value, and with a
view that the imminent central bank tightening will cause the 2-year yield to
rise by more than the increase in a 10-year yield. The trader can express
this flattening view by selling a 2-year bond and buying a 10-year bond
in dP∕dy-equal amounts, that is 3.807=7.42644/1.95075 face value of the
2 year for each unit face value of the 10 year.

For example, if one sells $380.07 million face value of a 2-year bond
versus buying $100 million face value of a 10-year bond, one is exposed to
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the slope risk of -$74,264 (=$100,000,000 × −7.42644 × 0.0001) per bp:
for each 1 bp steepening/flattening of 2 year to 10 year, one loses/makes
$74,264. Note that this trade is impervious to the overall level of yields: if
the whole yield curve moves up or down by the same amount, there is no
profit or loss except for convexity and higher order effects. Its main risk is
to the slope of the yield curve.

EXERCISES

1. Use the Binomial Formula

(a + b)n =
n∑

k=0

(n
k

)

akbn−k

to show
(a)

e = lim
n→∞

(

1 + 1
n

)n

=
∞∑

k=0

1
k!

Hint:

(1 + 1
n
)n =

n∑

k=0

n!
k!(n − k)!

1
nk

. . .

=
n∑

k=0

1
k!

B(k,n)

where

B(k,n) = n(n − 1) . . . (n − (k − 1))
nk

for each k

(b) Use the Binomial Formula to show

ex = lim
n→∞

(

1 + x
n

)n
=

∞∑

k=0

xk

k!

Hint: Let n = mx, and evaluate (1 + x∕n)n = (1 + x∕(mx))mx.
2. Using an annual interest rate r = 4%, recompute Table 2.1 for FV(T) for

a horizon date of 6 months, T = 0.5. Repeat for a horizon date of 1y
and 6 months, T = 1.5.
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3. How long does it to take to double your money at a given rate r?
Begin with

FV = PVert = 2PV

and approximate ln(2) ≈ 0.72 to come up with the Rule of 72.
(a) At 3%, approximately how many years does it take to double your

money?
(b) How about at 8%?

4. Let rm be the interest rate with m compoundings per year, for example,
m = 12 means monthly compounding.
(a) Derive the formula to convert rm to rn for general m,n = 1,2,4,12.
(b) Let rc be the continuous compounding rate. Derive the formula to

convert rm to rc and vice versa.
(c) Convert a simple add-on rate, r0, to a compounded rate rm (m =

1,2,4,12), and vice versa.
(d) Convert a simple add-on rate, r0, to a continuously compounded

rate, rc, and vice versa.
(e) For m < n, what can you say qualitatively about rm versus rn?

Explain your answer.
(f) Convert a simple (add-on) Act/360 rate, r1 to a simple (add-on)

Act/365 rate, r2.
Hint: Compute the 1-year future value of unit currency invested at

each rate and use the law of one price.
5. A 2-year semiannual coupon bond is issued on 1/1/2020 and matures on

1/1/2022 with a semiannual coupon rate of 4% per annum and coupon
dates 7/1/2020, 1/1/2021, 7/1/2021, 1/1/2022, leading to four coupon
periods consisting of 182, 184, 181, and 184 days, respectively.

Remaining Accrual
Date Coupons (N) Fraction (w) P(C, y,N,m)

1/1/2020 4 0 1
1/2/2020 4 1/182

. . .
6/30/2020 4 181/182 1.019889
7/1/2020 3 0 1
7/2/2020 3 1/184 1.000108

. . .
12/31/2021 1 183/184 1.01989
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(a) Keeping its semiannual yield constant at 4%, graph the daily price
from 1/1/2020 to 12/31/2021, using Act/Act for fractional periods.
The price ramps up from 1/1/2020 to 6/30/2020 and drops (almost
2%) from 6/30/2020 to 7/1/2020 with no change in yields. The drop
is simply due to one fewer remaining coupons.

(b) Graph the clean and dirty price of the bond from 1/1/2020 to
12/31/2021 when its yield is held at 5%, resulting in a discount
bond, C < y.

(c) Graph the clean and dirty price of the bond from 1/1/2020 to
12/31/2021 when its yield is held at 3%, resulting in a premium
bond, C > y.

6. Geometric Series
(a) In a Fractional Reserve system of banking, each bank need only keep

a fraction 𝛼, say 5%, of its deposits and can lend out 1 − 𝛼. The loan
recipient will then deposit 1 − 𝛼 at its own bank (or it could be the
same bank) and use the proceeds as/when needed. The second bank
in turn can lend out 1 − 𝛼 of this amount (1 − 𝛼)2, and so on. Com-
pute the Velocity of Money: The total amount of currency generated
by each new unit of currency

1 + (1 − 𝛼) + (1 − 𝛼)2 + . . .

What is the velocity of money when 𝛼 = 5%?
(b) A simple model for a company’s stock value is the Dividend Dis-

count Model. It is assumed that the company pays periodic divi-
dends with growth rate g, that is each new periodic dividend Dn+1 =
(1 + g)Dn. Discounting each future dividend using the same periodic
discount rate r, the stock value S is computed as the discounted value
of future dividends

S =
∞∑

i=1

D0(
1 + g
1 + r

)i

where D0 is the current dividend amount. Using the above model,
compute S as a function of D0, r, g, and provide conditions to ensure
the sum converges.

7. Using the bisection method, compute the semiannual yield of a 5-year
bond paying a semiannual coupon of 2% per annum and trading at
98%. Start with bracketing levels of 0%, 10%, and stop when the result
accuracy is better than 1.0 × 10−4.
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8. Using a semiannually compounded yield of 4% p.a., numerically or via
evaluating the formula, compute the PV01 of
(a) $1 million 5-year zero-coupon bond
(b) $1 million 5-year 4% coupon bond with semiannual coupon pay-

ments
(c) $1 million 5-year 4% annuity with semiannual payments

9. For a T-year zero-coupon bond with continuously compounded yield y,
compute
(a) Its modified duration, 1∕P × dP∕dy
(b) Its convexity, d2P∕dy2

(c) The price, modified duration, and convexity of a 5-year zero-coupon
bond with continuously compounded yield of 5%.

10. Limits at y = 0
(a) Evaluate P(C, y,N,m) (Formula 2.5) at y = 0.
(b) Evaluate dP∕dy (Formula 2.9) at y = 0. [Hint: L’Hôpital’s Rule, or

evaluate derivative of each term in the price-yield summation for-
mula in Formula 2.5].

(c) Evaluate dP∕dC (Formula 2.10) at y = 0.
11. Convexity

(a) If f ′′ exists, use the definition 2.11 and

f ′′(x) = lim
h→0

f (x + h) + f (x − h) − 2f (x)
h2

to show that f ′′(x) ≥ 0 for a convex function (f ′′ ≤ 0 for a concave
function Formula 2.11).

(b) For a bond with periodic coupon payments, the ith cash flow is
discounted using 1∕(1 + y∕m)i. Show that 1∕(1 + y∕m)i is a convex
function of y.

(c) Show that Formula 2.5, for the price of a coupon bond is a convex
function of yield. [Hint: Use the result from part (b) of this problem.]

12. For a 30-year monthly level-pay home mortgage loan of $500,000 with
a 3% interest rate
(a) Compute the monthly level payment.
(b) What is the total amount of interest you pay during the loan?
(c) After how many periods have you paid off half of the principal? Find

n where Bn−1 > $250,000,Bn ≤ $250,000.
(d) After how many periods does the monthly payment start to cover

more of the principal than the interest: Find n where In−1 > L∕2,
In ≤ L∕2.
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13. Derivation of S(x,m,N)
(a) Derive the formula for S(x,m,N) =

∑N
n=m nxn in Formula 2.16. Hint:

Begin by evaluating S(x,m,N) − xS(x,m,N).
(b) Alternatively, derive the formula by noting that

S(x,m,N) = x
d
dx

(
∑

n

xn

)

and use the Geometric Series Formula.
(c) Use the above formula and the fact that nxn → 0 as n → ∞ when

|x| < 1 to show

∑

n≥1

nxn = x
(1 − x)2

when |x| < 1.

14. Let a 2-year bond with a semiannual coupon rate of 2.25% p.a. have
a semiannual yield of 2% p.a., and a 10-year bond with a semiannual
coupon rate of 2.5% p.a. have a semiannual yield of 3% p.a.
(a) Calculate the PV01 of each bond.
(b) Assume you own N1 = $10M face value of the 2-year bond, and

want to protect (hedge) yourself against parallel shifts in the yield
curve by shorting the 10-year bond. How much face value of the
10-year bond do you need to sell short?

(c) What is the Profit and Loss (PnL) of your combined (long+short)
position due to a 10 bp parallel shift: the 2-year and 10-year bond
yields both increase by 10 bps (10 × 0.0001)?

(d) What is your PnL due to a 10 bp steepening: the 10-year yield change
is 10 bps more than 2-year yield’s change? (Assume the 2-year yield
change is 0.)

15. Given instruments in the following table

Semiannual Market Market
Instrument coupon rate yield price

6m (182 day) T-Bill 0% 0.75% 99.62083%
2y Treasury 1.375% 1.40% 99.95086%
3y Treasury 2.125% 2.00% 100.36222%
5y Treasury 2.5% 2.50% 100%
7y Treasury 3% 2.90% 100.62942%
10y Treasury 3.25% 3.20% 100.42501%
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(a) Extract the semiannual discount factors for 10 years using the boot-
strap method with linear and log-linear interpolation in discount
factors.

(b) On the same graph, plot the semiannual zero-coupon yields (For-
mula 2.8 with w = 0) for 6m, 1y, . . . , 10y maturities for linear and
log-linear interpolation methods.

(c) Using the discount factor curve from the log-linear interpolation,
compute the price of a 5-year, 1% semiannual coupon bond and
convert the price using Formula 2.5 to a semiannual yield. Do the
same with a semiannual coupon rate of 8% to observe the coupon
effect on yields.
Hint: See Table 2.5

TABLE 2.5 Hint for bootstrap problem.

Linear Log-linear

T Zero Zero

(years) DF rate DF rate

0 1 1

0.5 0.9962083 0.761% 0.9962083 0.761%

. . .

2 0.9724397 1.402% 0.9724406 1.402%

. . .

7.5 0.7987633 3.018% 0.7980435 3.031%

. . .

9.5 0.7373020 3.234% 0.7366574 3.243%

10 0.7219367 3.285% 0.7220633 3.283%

16. Using the price-yield Formula 2.5 for a bond with a periodic coupon of
C∕m with N remaining coupons, show that P(N,m,C, y) × (1 + y∕m)N
equals the sum of all coupon payments reinvested to maturity at the
periodic rate of y∕m plus the principal payment paid at maturity.

17. U.S. Treasury Bills are quoted based on an Act/360 discount yield, PB =
1 − yBN∕360, where N is the number of days from settlement date to
maturity date.
(a) Provide a formula for converting the Act/360 discount yield to an

Act/360 simple (add-on) yield, PB × (1 + ysN∕360) = 1.
(b) The semiannual coupon equivalent yield (bond equivalent yield,

BEY) of a T-Bill is defined as follows: let w = N∕365 (366 if there
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is a leap day between settlement and maturity dates). If w ≤ 1∕2,
the BEY y solves

PB × (1 + yw) = 1

If w > 1∕2, y is the positive solution to the following quadratic
equation

PB(1 + y∕2)(1 + y(w − 1∕2)) = 1

Provide a formula for y in terms of PB and w for each case (w ≤ 1∕2,
w > 1∕2).

(c) On Thursday, 12-Aug-2021, the U.S. Treasury issued a 52-week
(“1-year”) T-Bill with maturity date Monday 11-Aug-2022. If the
price of this T-Bill for settlement date 8-Oct-2021 is 98%, compute
its discount yield, simple (add-on) yield, and the bond-equivalent
yield on the settlement date.

18. Compute price P, sensitivity dP∕dy, convexity d2P∕dy2 of 2y, 5y,
10y, 30y, 100y bonds, all with a semiannual coupon rate of 4% per
annum when
(a) y = 4%
(b) y = 1%

19. Compute total interest for a level pay loan, I =
∑N−1

n=0 In, to show that
I = AL × C∕m. Does this make sense?

20. Evaluate Formula 2.18 when s = 1, and explain the result.
21. For a given time series x1,x2, . . . , the N-period arithmetic Moving Aver-

age (MA), A(n,N), is defined as

A(n,N) =

{
(x1 + . . . + xn)∕n if n < N
(xn + xn−1 + . . . + xn−(N−1))∕N if n ≥ N

Similarly, given 0 < 𝛼 < 1, the Exponential Moving Average (EMA),
E(n, 𝛼), is defined as

E(n, 𝛼) =

{
x1 n = 1
𝛼xn + (1 − 𝛼)E(n − 1, 𝛼) n > 1

When computing A(n,N),E(n, 𝛼), the age of a data point xn−i is i, and
the Average Age is the weighted average age.
(a) Compute the average age of an N-period arithmetic MA.
(b) Prove the following

E(n, 𝛼) =
n−2∑

i=0

𝛼(1 − 𝛼)ixn−i + (1 − 𝛼)n−1x1
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and verify the following asymptotic approximation for large n

E(n, 𝛼) ≈
∞∑

i=0

𝛼(1 − 𝛼)ixn−i

(c) Using the approximation from part (b), verify that the weights
𝛼(1 − 𝛼)i add up to 1, and compute the asymptotic Average Age
of EMA ∞∑

i=0

i𝛼(1 − 𝛼)i

(d) An EMA with an asymptotic average age equal to an N-period arith-
metic MA is called an N-period EMA. What is the 𝛼 of an N-period
EMA?

(e) A crypto exchange defines its settlement price as the 30-second EMA
of the Bitcoin price. What weight is assigned to the Bitcoin price of
15 seconds ago?

PYTHON PROJECTS

1. Price-Yield Formula. To apply Formula 2.6 and 2.7 with dates, we need
a series of helper functions.
(a) Write a function that for any input date yyyymmdd returns the last

day of that month. Recall that February has 29 days in leap years, and
a leap year is one that is divisible by 4, unless it is a multiple of 100
but not a multiple of 400.

def is_leap_year(yyyy):
res = False
# is yyyy a multiple of 4? change res to True
# is yyyy a mulitple of 100? change res back to False
# is yyyy a multiple of 400? change res back to True
return res

def last_day_of_month(input_date):
# input_date comes in as an int yyyymmdd, e.g,. 20000101
# extract year, month (1 through 12)
dict_month_days = { 1:31; 2:28; 3:31, ..., 12:31}
res = dict_month[month]
if is_leap_year(year) and month==2:

res = 29

return res



Trim Size: 6in x 9in Sadr838401 c02.tex V1 - 03/18/2022 3:28pm Page 49�

� �

�

Rates, Yields, Bond Math 49

(b) Write a function that adds n months to a given date. If the start date is
an end of month, then the resulting date should also be end of month:
1 month after Feb 28th is Mar 31st, not Mar 28th.

def add_month(input_date, num_months):
# num_months can be 0, positive or negative integer
# extract yyyy, mm
months1 = 12 * yyyy + mm -1
months2 = months1 + num_months
# convert months2 to yyyymm
# append appropriate dd to yyyymm

return yyyymmdd

(c) Write a function that computes the number of days between two dates.
This requires calculation of the Julian day of dates.

def julian_day(input_date):
# extract y, m, d
mm = (m + 9) / / 12 - 1
jd = (1461 * (y + 4800 + mm)) // 4 \

+ (367 * (m - 2 - 12 * mm)) // 12 \
- (3 * ((y + 4900 + mm) // 100)) // 4 \
+ d - 32075

return jd
def date_diff(date1, date2):

return julian_day(date2) - julian_day(date1)

(d) Compute the number of remaining periodic coupons, previous
coupon date, and next coupon date

def num_coupons(start_date, end_date, freq):
# freq is 1 (annual), 2 (semi-annual), 4 (quarterly),

12 (monthly)
period_months = 12/freq
num = 0
while add_month(end_date, -num*period_months)
> start_date:

num = num + 1

return num
def prev_coupon_date(settle_date, mat_date, freq):

period_months = 12/freq
num = num_coupons(settle_date, mat_date, freq)
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prev_date = add_month(mat_date, - num * period_months)

return prev_date
def next_coupon_date(settle_date, mat_date, freq):

period_months = 12/freq
num = num_coupons(settle_date, mat_date, freq)
next_date = ...

return next_date

(e) Dirty and Clean price, Formulas 2.6 and 2.7

def price(settle_date, mat_date, coupon, yield, freq):
N = num_coupons(settle_date, mat_date, freq)
nxt = next_coupon_date(settle_date, mat_date, freq)
prv = prev_coupon_date(settle_date, mat_date, freq)
w = date_diff(prv, settle_date) / date_diff(prv, nxt)
# Formula for dirty price

return price
def price-clean(settle_date, mat_date, coupon, yield, freq):

price-dirty = price(settle_date, mat_date, coupon, yield,
freq)

nxt = next_coupon_date(settle_date, mat_date, freq)
prv = prev_coupon_date(settle_date, mat_date, freq)
w = date_diff(prv, settle_date) / date_diff(prv, nxt)

return price_dirty - w * coupon / freq

(f) Solve for yield given a clean price

def yld(settle_date, mat_date, coupon, target_price, freq):
# find 2 yields that bracket the clean_price
# P(y_lo) > clean_price > P(y_hi)
prc_lo = price-clean(settle_date, mat_date, coupon, y_lo,
freq)

prc_hi = price-clean(settle_date, mat_date, coupon, y_hi,
freq)

tol = 1.0e-8
y_mid = 0.5 * (y_lo + y_hi)
prc_mid = price-clean(settle_date, mat_date, coupon,
y_mid, freq)
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while abs(target_price-prc_mid) > tol:
if prc_mid > target_price:

y_lo = y_mid
prc_lo = prc_mid

else:
y_hi = y_mid
prc_hi = prc_mid

y_mid = 0.5 * (y_lo + y_hi)
prc_mid = price-clean(settle_date, mat_date, coupon,
y_mid, freq)

return y_mid

2. Bootstrap Method
Implement the bootstrap method for a given collection of N bonds

using the following series of helper functions. Assume all bonds have the
same coupon frequency, say m = 2, and let the bonds be sorted according
to their maturity dates.

# mat_dates = [mat_date1, ..., mat_dateN]
mat_date1<mat_date2<...

# coupons = [coupon1, ..., couponN]
# mkt_prices = [price1, ..., priceN]
# These are Dirty/Full prices: today's value of remaining

cashflows

(a) Write a function that returns the remaining cash flow dates and
amounts of a bond per unit face value.

def cash_flows(settle_date, mat_date, coupon, freq):
dates = [mat_date]
amounts = [1.0]

N = num_coupons(settle_date, mat_date, freq)
# freq is 1 (annual), 2 (semi-annual), 4 (quarterly),

12 (monthly)
period_months = 12/freq

for cf_no in range(N):
cf_date = add_month(mat_date, -cf_no * period_months)
dates.append(cf_date)
amounts.append(coupon/freq)

return dates, amounts
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(b) Given a list of sorted dates (yyyymmdd) and a date strictly in between
the first and last date, use bisection to write a function that returns the
location of a new date: dates[location] ≤ date < dates[location+1].

def locate_date(sorted_dates, new_date):
# sorted_dates[0] <= new_date <= sorted_date[-1]
# Use the bisection method to find the location:
# sorted_dates[loc_idx] <= new_date

< sorted_dates[loc_idx+1]

return loc_idx

(c) Represent a discount factor curve as a list of sorted dates, a list of
corresponding discount factors, and an interpolation method. Write
a function to return the discount factor for an arbitrary date.

def get_df(df_dates, df_values, interp_method, new_date):
if new_date <= df_dates[0]:

return df_values[0]
if new_date >= df_dates[-1]:

return df_value[-1]

loc_idx = locate_date(df_dates, new_date)

# Use the appropriate interpolation formula to
calculate new_df

# based on df_values[loc_idx], df_values[loc_idx+1]

return new_df

(d) Calculate today’s value of bond given a discount factor curve.

def price:bond(df_dates, df_values, interp_method, \
settle_date, mat_date, coupon, freq):

dates, amounts = cash_flows(settle_date, mat_date,
coupon, freq)

sum = 0
for cf_no in range(len(date)):

df = get_df(df_dates, df_values, interp_method,
dates[cf_no])

sum = sum + amounts[cf_no] * df

return sum
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(e) Create a discount factor curve using the bootstrap method.

def df_curve(settle_date, mat_dates, coupons, mkt_prices,
interp_method):

df_dates=[settle_date]
df_values=[1.0]
N = len(mat_dates)
for bond_no in range(N):

last_dfdate = df_dates[-1]
new_mat = mat_dates[bond_no]
if new_mat > last_dfdate:

df_dates.append(new_mat)
# Use bisection to find appropriate value to

append to df_values
...

return df_dates, df_values
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CHAPTER 3
Investment Theory

The future cash flows and, hence, returns of many investments are uncer-
tain. Even for fixed income instruments like bonds where the cash flows

are known, the future yields are not known, hence, the future price of a bond
until its maturity is random: we know the current price, and we also know
its final price at maturity (100%), but for any date between now and matu-
rity, the bond price is random. Faced with this uncertainty, much of finance
uses techniques and insights from probability theory and shares concepts
and language of games of chance and gambling: a sound investment is a
gamble with good odds and risk/reward profile.

One of the oldest studies of games of chance that combines elements
of probability theory, decision-making under uncertainty, and behavioral
finance is the following: consider a game based on successive coin flips with
the payoff 2N where N is the number of tosses to get to the first tail (see
Table 3.1).

Let X be the random payoff of this game. Its expected value is infinite

E[X] =
∑

Payoff × Probability

=
∑

N≥1

2N × (1∕2)N

=
∑

N≥1

1 = ∞

What is the fair price of this random payoff, that is, how much should a
rational person pay to play this game? One can argue that since the expected
payoff is infinite, one should be willing to pay any finite amount. How-
ever, most people observe that the potentially large (exponential) payoffs
are accompanied by very small probabilities, and will, therefore, limit their
price. It has been suggested that a reasonable maximum anyone should pay
is $25, a far cry from infinity.

55
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TABLE 3.1 St. Petersburg game.

Outcome N Payoff Probability

{T} 1 2 1/2
{H,T} 2 22 (1∕2)2

{H,H,T} 3 23 (1∕2)3
. . .

This classic conundrum is called the St. Petersburg Paradox. The orig-
inal and usual remedy is to posit that the utility of money—its value or
usefulness—is not linear, but a concave function, and its incremental value
decreases as wealth increases: diminishing utility. For example, if we model
utility of wealth via a logarithm function, we can calculate the expected
utility of the above payoff

E[U(X)] = E[ln(X)] =
∑

N≥1

ln(2N)(1∕2)N

= ln(2)
∑

N≥1

N

2N

= 2 ln(2) ≈ 1.4

using Formula 2.17.
The square root function is another concave utility function with dimin-

ishing utility as wealth increases. We have

∑

N≥1

√

2N 1

2N
=

∑

N≥1

(

1
√

2

)N

= 1
√

2 − 1
≈ 2.5

3.1 UTILITY THEORY

The problem of how much to pay for a random payoff—also referred to as
a lottery—or how to select among random payoffs starting with an initial
amount of wealth are facets of decision making under uncertainty that have
been studied under game theory and decision theory disciplines. In finance,
the applications are in investment choice and portfolio selection.
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3.1.1 Risk Appetite

Much of utility and investment theory is based on each individual’s attitude
toward uncertainty and risk. Let us compare a few random payoffs

X1 = $100 with probability 1, a sure bet with no uncertainty

X2 =

{
101 with probability p = 1∕2
99 with probability 1 − p = 1∕2

X3 =

{
200 with probability p = 1∕2
0 with probability 1 − p = 1∕2

X4 =
⎧
⎪
⎨
⎪
⎩

1,000,000 with probability p = 1∕1,000,000
99

1 − p
≈ 99 with probability 1 − p

X5 =
⎧
⎪
⎨
⎪
⎩

−1,000,000 with probability p = 1∕1,000,000
101

1 − p
≈ 101 with probability 1 − p

and let Yi be the profit or loss if one pays $100 for each of the above,
Yi = Xi − 100: Y1 = 0, Y2 = ±1 with probability 1/2, Y3 = ±100 with prob-
ability 1/2

Y4 =
⎧
⎪
⎨
⎪
⎩

999,900 with probability p = 1∕1,000,000
−1

1 − p
≈ −1 with probability 1 − p

Y5 =
⎧
⎪
⎨
⎪
⎩

−1,000,100 with probability p = 1∕1,000,000
1

1 − p
≈ 1 with probability 1 − p

We observe that that E[Xi] = 100, E[Yi] = 0

𝜎(X1) = 0, 𝜎(X2) = 1, 𝜎(X3) = 100

𝜎(X4) = 𝜎(X5) ≈ 1,000

𝜎(Yi) = 𝜎(Xi) where 𝜎(Xi) is the standard deviation of Xi.
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Using X1 as the base case, it should be clear that its price should be $100
as any deviation from $100 will be arbitraged away.

When comparing X1 and X2 either via the payoffs or the PnL (Y1 ver-
sus Y2), most people might consider them equivalent. This is an example of
a risk-neutral attitude where two payoffs with different characteristics are
considered equivalent when they have the same expected value.

Moving on to X3, most people would not consider it equivalent to
X1, as it entails losing all the investment, and one might want to pay an
amount less than $100 to be compensated for this risk. This is an example
of risk-aversion where one requires a risk premium for taking on risk. For
example, equities in general have higher risk than bonds and command a
higher yield (lower price) in exchange for that risk.

X4 is an example of a lottery ticket, and given the large payoff, one
might be willing to pay even more than $100 for the large payoff even after
consideration of the small probability of the large payoff. This is an example
of risk taking, that is, paying up rather than receiving a premium for a risky
investment.

The last case, X5, highlights loss aversion. Although it has the same
expected value and standard deviation as X4, most people would be loathe
to pay even $100 for it, and some might even ask to be paid to take on
this risk. Examples of loss aversion are buying auto or home insurance or
an extended warranty for a product. Even though the expected payoff—cost
versus potential payoff—has negative expected value, most people prefer the
certainty of limited maximum loss and keep insurers in business.

In the payoff space (Xis), paying less than $100 for X5 is an example
of risk-aversion, but when considered via the lens of gain and loss (Yis), it
highlights the asymmetric attitude of most people between gain and loss: a
large gain with a small probability (Y4) is desirable, while an equal size loss
with the same probability (Y5) is not. This is one of the insights of behavioral
finance and can be analyzed via prospect theory.

3.1.2 Risk versus Uncertainty, Ranking

In many fields, including finance, one makes a distinction between objec-
tive versus subjective probabilities. Objective probability is associated with
repeatable games of chance and is interpreted as the long-term statistical
average frequencies. Games of chance such as the canonical coin flip and
its associated objective probability of 1/2 is an example of decision-making
under risk.

Making predictions or decisions for infrequent or one-off events such
as Brexit or Covid are examples of using one’s own subjective probabilities
and decision-making under uncertainty.
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Utility theory is a formalization and guide to rational decision-making
under risk or uncertainty. It is a normative versus a descriptive approach:
it shows how one should make decisions as opposed to describing how one
actually makes them. It does not prescribe any certain attitude toward risk
(risk-averse, risk-neutral, risk-seeking), but its aim is to ensure consistency
and an ability to rank random payoffs referred to as lotteries, regardless of
one’s attitude toward risk.

In what follows, we shall use the terms lotteries and random payoffs
modeled as discrete random variables interchangeably. Ranking of payoffs
is denoted by “ ≺ ”: X1 ≺ X2 means payoff X2 is preferred to X1. X1 ∼ X2
means one is indifferent between X1 and X2, and X1 ⪯ X2 means that X2
is no worse than X1. When choosing between a sure return X1 versus an
uncertain one X2 with E[X1] = E[X2], risk-averse investors would rank X1
as better than X2, X2 ≺ X1, and are willing to pay a higher price for the sure
bet X1.

Utility theory uses simple lotteries and compound lotteries. Starting with
two lotteries X1,X2, one can create a new compound lottery as follows: we
first flip a loaded coin with probability of Heads equal to 0 < p < 1, with
the coin flip independent from X1,X2. If we get Heads, the payoff is lot-
tery X1, and if we get Tails, the payoff is lottery X2 (see Figure 3.1). This
new lottery X3 has the combined payoffs of X1 and X2 but with probabili-
ties p𝜋1 + (1 − p)𝜋2, where 𝜋1, 𝜋2 are the probability mass functions of each
random variable

𝜋1,2(xi) = P[X1,2 = xi]

For example, using the two lotteries X1,X2

P[X1 = 100] = 1, P[X2 = 80] = P[X2 = 120] = 1∕2

and a given 0 < p < 1, we create the compound lottery X3

P[X3 = 100] = p, P[X3 = 80] = P[X3 = 120] = (1 − p)∕2

3.1.3 Utility Theory Axioms

The utility theory axioms are:

1. Completeness: Any two payoffs can be compared: X ≺ Y, or Y ≺ X or
X ∼ Y. “I can’t/won’t decide” is not an option!

2. Transitivity: If X ≺ Y and Y ≺ Z, then X ≺ Z.
3. Continuity: Given three lotteries with X ⪯ Y ⪯ Z, one can create a new

compound lottery from X, Z that is equivalent to Y: there exists a prob-
ability 0 ≤ p ≤ 1, where 𝜋Y = p𝜋X + (1 − p)𝜋Z.
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FIGURE 3.1 Compound lottery.

4. Independence/Substitution: Creating compound lotteries preserves
ranking. Specifically, starting with two lotteries X ⪯ Y, and given a new
lottery Z independent of X,Y, then for any probability 0 < p ≤ 1, we
must have

p𝜋X + (1 − p)𝜋Z ⪯ p𝜋Y + (1 − p)𝜋Z

The axioms were posited by John von Neumann and Oskar Morgenstern
(VNM), and the VNM Expected Utility Theorem states: a ranking ≺ sat-
isfying above axioms is equivalent to the existence of a utility function U
where X ≺ Y is equivalent to E[U(X)] < E[U(Y)].

Armed with a utility function, the tedious pairwise comparison of simple
and compound lotteries can be replaced by calculating and comparing the
expected utility of their payoffs using probabilities (objective or subjective).
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FIGURE 3.2 Risk attitude and utility function.

VNM Utility Theorem is an existence theorem. It does not impose any
shape on the utility function. VNM utility of each person can be different
than another person’s, (see Figure 3.2) allowing for:

■ Risk-aversion: concave utility function, U′′(x) < 0
■ Risk-seeking: convex utility function, U′′(x) > 0
■ Risk-neutrality: linear utility function, U′(x) = c for a constant c, U′′ = 0

Moreover, utility is unique up to a linear transformation: let U1(x) be
the utility function of a person and U2(x) the utility function of another
person with identical ranking of all lotteries. One might expect that U2(x) =
U1(x), but utility theory’s axioms only show that U2(x) = aU1(x) + b for any
constant a > 0, b provide the same ranking of lotteries as U1.

3.1.4 Certainty-Equivalent

Given a utility function, for any random payoff X with expected utility
E[U(X)], we can consider a guaranteed payoff Y with only one outcome
cX, P[Y = cX] = 1, with the same expected utility as X, E[U(Y)] = E[U(X)].
We have

E[U(Y)] = U(cX) × P[Y = cX]

= U(cX) × 1

= U(cX)
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The constant cX is called the certainty-equivalent of X and satisfies

E[U(cX)] = U(cX) = E[U(X)]

It can be interpreted as the certain amount, cX, that one would pay to receive
an uncertain amount X to receive the same utility.

The utility function of a risk-averse investor is concave, and by Jensen’s
inequality

f (E[X]) ≥ f [U(X)]

for any concave function f . Therefore, U(E[X]) ≥ U(cX), and if we make
the reasonable assumption that utility is an increasing function of wealth,
we observe that E[X] ≥ cX for a risk-averse investor.

The difference between E[X] and cX is defined as the absolute risk pre-
mium as a measure of the concavity the utility function and risk-aversion,
Figure 3.3

𝜋A(X) = E[X] − cX

while the proportional amount

𝜋R(X) =
E[X] − cX

E[X]
=

𝜋A(X)
E[X]

is defined as the relative risk premium.

U(E [X ])

U(cX) = E(U[X ])

U
til

ity

WealthE [X ]cX

πA

FIGURE 3.3 Risk premium for a risk-averse investor.
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3.1.5 X-ARRA

Utility functions exhibiting risk aversion are concave, U′′(x) < 0, and differ-
ent functional forms of concave functions have been proposed and studied
for risk-averse investors. The term −U′′(x) is a measure of concavity and a
higher concavity and risk aversion results in a higher −U′′(x). Since utility
of two persons with identical preference is only unique up to a linear trans-
formation, −U′′ is divided by U′ to remove this and −U′′(x)∕U′(x), known
as Arrow-Pratt absolute risk aversion (ARA), is used to classify utility func-
tions. Note that if U2(x) = aU1(x) + b

−
U′′

2 (x)
U′

2(x)
= −

(aU1(x) + b)′′

(aU1(x) + b)′

= −
aU′′

1 (x)
aU′

1(x)

= −
U′′

1 (x)
U′

1(x)

Therefore, two persons with identical ranking of lotteries will have identi-
cal ARA.

A similar measure is the relative risk aversion (RRA), which is defined
as ARA multiplied by x. Note

−x
U′′(x)
U′(x)

= −
d∕dxU′(x)

U′(x)∕x

= −
dU′(x)∕U′(x)

dx∕x

= −
Relative Change in U′(x)

Relative Change in x

ARA and absolute risk premium can be related via the following heuris-
tic argument. For a given random payoff X, let 𝜇 = E[X], 𝜎2 = Var(X). If we
Taylor-expand U(⋅) around 𝜇 up to the first order term, we can evaluate

U(cX) ≈ U(𝜇) + U′(𝜇)(cX − 𝜇) (3.1)

Similarly, if we Taylor-expand U(⋅) around 𝜇 up to the second order term,
we get

U(X) ≈ U(𝜇) + U′(𝜇)(X − 𝜇) + 1∕2U′′(𝜇)(X − 𝜇)2 (3.2)
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Taking expected value of both sides of Formula 3.2, since E[X] = 𝜇, we get

E[U(X)] ≈U(𝜇) + U′(𝜇)E[(X − 𝜇)] + 1∕2U′′(𝜇)E[(𝜇)(X − 𝜇)2]

=U(𝜇) + 1∕2U′′(𝜇)𝜎2 (3.3)

Since U(cX) = E[U(X)], combining Formulas 3.1 and 3.3, we get

𝜋A = 𝜇 − cX

= −1
2

U′′(𝜇)
U′(𝜇)

𝜎2

= 1
2

ARA(𝜇)𝜎2

Similarly, we can show

𝜋R = 1
2

RRA(𝜇)s2, s2 = Var
(

X
E[X]

)

The two most commonly used classes of ARA and RRA are constant abso-
lute risk aversion (CARA) with parametric form −e−cx for a constant c, and
constant relative risk aversion (CRRA) with parametric form x1−𝛼∕(1 − 𝛼)
for 𝛼 ≠ 1 and ln(x) when 𝛼 = 1.

Both of these parametric family of functions are special cases of the gen-
eral hyperbolic absolute risk aversion (HARA) with parametric form

H(x) = 𝛾

1 − 𝛾

(
x
𝛾
+ 𝜂

)1−𝛾

H(x) = CRRA when 𝜂 = 0 and it can be shown that H(x) → CARA(1∕𝜂)
as 𝛾 → ∞.

3.2 PORTFOLIO SELECTION

Utility theory in general and the parametric families expressing the utility
function provide a framework to evaluate and rank investments. The rank-
ing is based on the expected utility of the investment’s future values requiring
full specification of the distribution of the future value or returns of the
underlying investment. The ranking of investments can aid in investment
choice and portfolio construction.
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3.2.1 Asset Allocation

Consider a portfolio P composed of N assets. The value of the portfolio at
any time, VP(t), depends on the quantity of each asset, Qi, and the asset’s
price, Pi

VP =
N∑

i=1

QiPi =
N∑

i=1

Vi, Vi = QiPi

The portfolio allocation of the ith asset is the relative value of that asset’s
value Vi = QiPi to the portfolio value

wi =
Vi

VP
=

Vi
∑

iVi
=

QiPi
∑

iQiPi

where the wis are the portfolio weights of the assets. The weights add up
to 1 ∑

i

wi = 1

Note that an asset’s weight is its relative value contribution, Qi × Pi, to port-
folio value,

∑
iQiPi, not its relative price or its relative quantity.

Given an initial investment amount VP(0), the goal of asset allocation is
to find wi to maximize the future wealth VP(t).

3.2.2 Markowitz Mean-Variance Portfolio Theory

The pioneering work of Harry Markowitz (Markowitz, 1952) casts the port-
folio selection problem as a trade-off between risk and reward of returns.
The 1-period rate of return, or simply return of an asset, is the relative change
in the value

R(t) = V(t) − V(0)
V(0)

= V(t)
V(0)

− 1

over the 1-period investment horizon (0, t). One can annualize the return by
dividing above with length of the period t measured in years.

The 1-period rate of return of a portfolio can be related to the rate of
return of each asset in the portfolio. Let Ri be the ith asset’s 1-period rate of
return

Ri =
Vi(t)
Vi(0)

− 1 =
QiPi(t)
QiPi(0)

− 1 =
Pi(t)
Pi(0)

− 1
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We have

RP =
VP(t)
VP(0)

− 1 =
∑

iVi(t)
VP(0)

− 1

=
∑

iVi(0)(1 + Ri)
VP(0)

− 1

=

[∑
iVi(0)

VP(0)
+
∑

i

(
Vi(0)
VP(0)

)

Ri

]

− 1

=
∑

i

wiRi

since VP(0) =
∑

iVi(0).

3.2.3 Risky Assets

In general, asset returns are random. For a given 1-period investment hori-
zon, we let RA denote the return of an asset A over that horizon. RA is a
random variable, and we let 𝜇R = E[R], 𝜎R =

√
Var(R), and use the follow-

ing shorthand notation
RA ∼ (𝜇A, 𝜎A)

In this notation, 𝜇A is the expected return of asset A, while 𝜎A is the standard
deviation of its return, commonly referred to as the risk of the asset. A risky
asset is one where there is uncertainty about its return: 𝜎R > 0. A risk-free
asset is one where there is no uncertainty about its return: 𝜎A = 0, and
its return RA is a constant number. The canonical example of risky assets
are stocks, while bonds or interest-bearing bank deposits are considered
risk-free assets.

3.2.4 Portfolio Risk

Consider a portfolio, P, of two assets, A1,A2, with returns Ri = RAi
∼

(𝜇i, 𝜎i), and let w1,w2 be the weights of the assets for a 1-period investment
horizon. We have already shown

RP = w1R1 + w2R2

Since expectation, E, is linear, we have

𝜇P = E[RP] = E[w1R1 + w2R2] = w1E[R1] + w2E[R2]

= w1𝜇1 + w2𝜇2
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The portfolio risk, 𝜎P, is related to the covariance matrix, C, of the two
assets’ returns

C =
[

𝜎2
1 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2

]

where 𝜌 is the correlation between R1 and R2. We have

𝜎2
P = w2

1𝜎
2
1 + w2

2𝜎
2
2 + 2w1w2𝜌𝜎1𝜎2

=
[
w1 w2

]
[

𝜎2
1 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2

] [
w1
w2

]

= wTCw

In general, for a portfolio consisting of N assets with weights {w1, . . . ,wN},
where each asset’s return Ri = RAi

∼ (𝜇i, 𝜎i), we have

RP =
∑

i

wiRi

𝜇P = E[RP] =
∑

i

wi𝜇i = wT
𝝁

where

w =
⎡
⎢
⎢
⎣

w1
. . .

wN

⎤
⎥
⎥
⎦

, 𝝁 =
⎡
⎢
⎢
⎣

𝜇1
. . .

𝜇N

⎤
⎥
⎥
⎦

The portfolio variance can be expressed as

𝜎2
P = wTCw

where C is the N × N covariance matrix of the returns

[C]ij = Cov(Ri,Rj) = E[(Ri − 𝜇i)(Rj − 𝜇j)] = 𝜌ij𝜎i𝜎j = 𝜎ij

with 𝜌ij denoting the correlation between Ri and Rj.
Recall that the weights must add up to 1,

∑
iwi = 1, or in matrix notation

uTw = 1

where u is the unit column vector with N rows:

u =
⎡
⎢
⎢
⎣

1
. . .

1

⎤
⎥
⎥
⎦
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3.2.5 Minimum Variance Portfolio

Focusing on the two-asset portfolio, let R1 ∼ (𝜇1, 𝜎1),R2 ∼ (𝜇2, 𝜎2) with C as
the 2 × 2 covariance matrix of the assets’ returns. Since w2 = 1 − w1, both
𝜇 = 𝜇P and 𝜎 = 𝜎P become a function of w1, and each choice of w1 gives rise
to a feasible portfolio, that is, a portfolio that can be constructed from the
two assets.

Moreover, since w2 = 1 − w1, 𝜇 = w1𝜇1 + (1 − w1)𝜇2, and, hence, w1 is
a linear function of 𝜇

w1 = 1
𝜇1 − 𝜇2

𝜇 −
𝜇2

𝜇1 − 𝜇2

and the portfolio variance 𝜎2 and its mean are related as

𝜎2∕c2
𝜎 − (𝜇 − 𝜇0)2∕c2

𝜇 = 1

for constants 𝜇0, c𝜇, c𝜎 . This is the canonical equation of a hyperbola in the
risk-reward (𝜎, 𝜇). Recall that a hyperbola is a conic section with canonical
form in the (x, y) plane as x2∕a2 − y2∕b2 = 1 for constants a,b with asymp-
totes: y = ±(b∕a)x (see Figure 3.4).

The hyperbola consisting of the points (𝜇P, 𝜎P) of each feasible portfolio
as we vary w1 is referred to as the Markowitz bullet after the pioneering
work on portfolio selection by Harry Markowitz (see Figure 3.5).

Circle x2 + y2 = c2 Ellipse = 1+
x2

a2

y2

b2

Parabola y2 = 4ax Hyperbola = 1–
x2

a2

y2

b2

FIGURE 3.4 Conic sections.
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Risk = Standard Deviation of Return (σ)
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FIGURE 3.5 Feasible region for two risky assets.

The vertex of the Markowitz bullet is the portfolio with the lowest
variance or equivalently lowest standard deviation (risk) among all feasi-
ble portfolios, and is referred to as the minimum variance portfolio (MVP).
The MVP can be found by using the fact that w2 = 1 − w1 and expressing
𝜎2

P solely as a function of w1, and then solving

d𝜎2
P

dw1
= 0 (3.4)

which is the necessary condition for finding the minimum. This leads to
the following for the minimizing weights, (w∗

1,w
∗
2), and the resulting MVP

(𝜇∗
P, 𝜎

∗
P) when the denominator term is not zero

w∗
1 =

𝜎2
2 − 𝜌𝜎1𝜎2

𝜎2
1 + 𝜎2

2 − 2𝜌𝜎1𝜎2

, w∗
2 =

𝜎2
1 − 𝜌𝜎1𝜎2

𝜎2
1 + 𝜎2

2 − 2𝜌𝜎1𝜎2

(3.5)

𝜇∗
P =

𝜇1𝜎
2
2 + 𝜇2𝜎

2
1 − (𝜇1 + 𝜇2)𝜌𝜎1𝜎2

𝜎2
1 + 𝜎2

2 − 2𝜌𝜎1𝜎2

𝜎∗
P =

√
√
√
√

𝜎2
1𝜎

2
2 (1 − 𝜌2)

𝜎2
1 + 𝜎2

2 − 2𝜌𝜎1𝜎2
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EXAMPLE 1

Let R1 ∼ (5%,10%) and R2 ∼ (10%,20%) denote the return of two
risky assets. The MVP and its weights as a function of correlation 𝜌 is
shown in Table 3.2 and Figure 3.6.

TABLE 3.2 MVP portfolio for two risky assets.

𝝆 (w∗
1
,w∗

2
) (𝝁∗

P
, 𝝈

∗
P
)

100% (2,−1) (0,0)
95% (1.75,−0.75) (1.25%,5.70%)
50% (1,0) (5%, 10%)

0 (0.8,0.2) (6%, 8.94%)
−75% (0.6875,0.3125) (6.56%, 4.68%)
−100% (2/3,1/3) (6.67%,0)

0.00
–0.10

–0.05

0.00

0.05

0.10

ρ = –1
ρ = –75%

ρ = 95%

ρ = 0

ρ = 1

0.15
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FIGURE 3.6 Feasible regions for different correlations.
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3.2.6 Leverage, Short Sales

As can be seen in Table 3.2, the optimal quantities of an asset in a port-
folio may turn out to be negative. The financial interpretation of negative
quantities is via understanding short sales.

When you own an asset, you are said to be long the asset. To go long
an asset means to buy an asset. If you own an asset, your position in that
asset is long. You can buy or go long an asset either by spending money that
you have, real money, or by borrowing money, leverage. When you buy an
asset through leverage and eventually sell it, your position becomes zero or
flat, and you need to pay back the lender the original amount borrowed plus
interest. The difference between sales and purchase price minus the inter-
est determines your profit and loss (PnL). Note that in this case, you are
borrowing money to spend it (buying the asset).

In the opposite direction, if you own an asset and sell it, you are selling
it out of inventory and your position after the sale is flat (zero). If you do
not own the asset, you can borrow it and sell it. This is called going short or
shorting an asset, and your position is not flat, but short, a negative quantity.
When you eventually buy the asset back, you are covering your short, and
you must return the asset to the asset lender. After covering your short, your
position becomes flat and your profit or loss is due to the difference between
purchase price versus short sale price plus any interest you might have earned
on the funds received upon the sale. In this case, you are borrowing an asset
to spend it (buying/receiving money).

Short sales as described above are generally only available to large
institutions. For retail investors, the brokerage firm will charge a fee (via
a high interest rate on the sale proceeds) for borrowing the security for
your account, greatly diminishing the PnL. The fee can be quite large for
difficult-to-borrow securities.

3.2.7 Multiple Risky Assets

For portfolios consisting of more than two risky assets, N > 2, the shape of
the feasible region changes to points on and inside a hyperbola in the (𝜎, 𝜇)
plane (see Figure 3.7). The equations for 𝜇P and 𝜎P become longer as we
have to consider all pair-wise terms, and the more general way to find the
MVP is to solve the following constrained optimization problem

Minimize wTCw with uTw = 1

The standard technique to solve constrained optimization problems is
via the method of Lagrange Multipliers with one multiplier 𝜆 for each con-
straint. This method is based on the observation that if a solution to an
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Risk = Standard Deviation of Return (σ)
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FIGURE 3.7 Feasible region for three or more risky assets.

optimization f (⋅) subject to constraint g(⋅) = c exists, then the gradient of
the constraint and the contour of f that just touches the constraint should
be co-linear

∇f = 𝜆∇g

for some 𝜆 where

∇f =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜕f
𝜕x1
. . .

𝜕f
𝜕xN

⎤
⎥
⎥
⎥
⎥
⎥
⎦

for a function f (x1, . . . ,xn) (see Figure 3.8).
To use this method, we first form the Lagrangian function

(w, 𝜆) = wTCw − 𝜆(uTw − 1)
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y

f (x, y) = c1

f (x, y) = c2

f (x, y) = c*

g (x, y) = c

x

g

Δ

f

Δ

g= Δλ 

FIGURE 3.8 Method of Lagrange multipliers.

and then set its derivatives with respect to each wi and each multiplier 𝜆 to
zero

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕
w1
. . .

𝜕
wN

𝜕
𝜆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
. . .

0
0

⎤
⎥
⎥
⎥
⎦

The above system of equations provide the necessary conditions for the opti-
mal w∗.

Let us rederive the weights of the MVP for two assets via Lagrange mul-
tipliers. We first form the Lagrangian function

(w1,w2, 𝜆) = wTCw − 𝜆(uTw − 1)

=
[
w1 w2

]
[

𝜎2
1 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2

] [
w1
w2

]

− 𝜆

(
[
1 1

]
[
w1
w2

]

− 1
)

= w2
1𝜎

2
1 + w2

2𝜎
2
2 + 2w1w2𝜌𝜎1𝜎2 − 𝜆(w1 + w2 − 1)
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and set all its partial derivatives to 0

⎡
⎢
⎢
⎣

𝜕∕𝜕w1
𝜕∕𝜕w2
𝜕∕𝜕𝜆

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

2𝜎2
1w1 + 2𝜌𝜎1𝜎2w2 − 𝜆

2𝜎2
2w2 + 2𝜌𝜎1𝜎2w1 − 𝜆

1 − w1 − w2

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎦

The first two rows give us

2
[

𝜎2
1 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2

] [
w1
w2

]

− 𝜆

[
1
1

]

=
[
0
0

]

or in matrix format
2Cw − 𝜆u = 𝟎

Taking the 𝜆 term to the right-hand side of the equation, and premultiplying
both sides with the matrix inverse of C, C−1 (if it exists), provides the weights
in terms of 𝜆: [

w1
w2

]

= 1
2
𝜆

[
𝜎2

1 𝜌𝜎1𝜎2
𝜌𝜎1𝜎2 𝜎2

2

]−1 [
1
1

]

(3.6)

or in matrix format
w = 1

2
𝜆C−1u

Since uTw = 1, we have

1
2
𝜆
[
1 1

]
[

𝜎2
1 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2

]−1 [
1
1

]

= 1

which allows us to calculate 𝜆

𝜆 = 2

[
1 1

]
[

𝜎2
1 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2

]−1 [
1
1

] (3.7)

or in matrix format
𝜆 = 2

uTC−1u

Note that the term in the denominator is a 1 × 1 matrix, i.e., a scalar or a
single number.
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We can now plug in Formula 3.7 for 𝜆 in Formula 3.6 to solve for w1,w2

[
w1
w2

]

=

[
𝜎2

1 𝜌𝜎1𝜎2
𝜌𝜎1𝜎2 𝜎2

2

]−1 [
1
1

]

[
1 1

]
[

𝜎2
1 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2

]−1 [
1
1

]

or in matrix format

w = C−1u
uTC−1u

All that remains is to calculate C−1

C−1 =
[

𝜎2
1 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2

]−1

= 1
𝜎2

1𝜎
2
2 − 𝜌2𝜎2

1𝜎
2
2

[
𝜎2

2 −𝜌𝜎1𝜎2
−𝜌𝜎1𝜎2 𝜎2

1

]

to get

[
w1
w2

]

=

[
𝜎2

2 −𝜌𝜎1𝜎2
−𝜌𝜎1𝜎2 𝜎2

1

] [
1
1

]

[
1 1

]
[

𝜎2
2 −𝜌𝜎1𝜎2

−𝜌𝜎1𝜎2 𝜎2
1

] [
1
1

]

= 1
𝜎2

1 + 𝜎2
2 − 2𝜌𝜎1𝜎2

[
𝜎2

2 − 𝜌𝜎1𝜎2

𝜎2
1 − 𝜌𝜎1𝜎2

]

which is the same result as in Formula 3.5.

3.2.8 Efficient Frontier

So far, we have focused on the MVP, the portfolio that has minimum vari-
ance, 𝜎2, or equivalently minimum risk, 𝜎. We can expand our search and
be willing to accept different risks. As mentioned before, there can be three
attitudes toward increased risk:

1. Risk-seeker: Given the potential higher upside, one might prefer the
riskier asset, even with same expected return.

2. Risk-averse: Higher risk should be compensated by higher returns.
3. Risk-neutral: As long as expected returns are the same, one is indifferent

on the risk of investments.
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Risk-averse investors expect a risk premium, i.e., extra expected return
to enter into a risky investment. Specifically, given two investments with
respective returns R1 ∼ (𝜇1, 𝜎1) and R2 ∼ (𝜇2, 𝜎2), they would avoid the lat-
ter if it has higher risk for less expected return: 𝜇1 ≥ 𝜇2 and 𝜎1 ≤ 𝜎2. In this
case, the first investment is said to dominate the second.

Given all feasible portfolios, the set of undominated ones is called the
efficient frontier. In our graph, it is the upper half of the Markowitz bullet.
Each portfolio on the efficient frontier is called the frontier portfolio.

3.2.9 Minimum Variance Frontier

A frontier portfolio is the highest returning portfolio for a given level of
risk 𝜎. One can ask a similar question based on returns: What is the least
risky portfolio for a given level of return 𝜇? The optimal weight vector,
w∗(𝜇), must satisfy the following

Minimize 𝜎2
P = wTCw

Subject to 𝝁
Tw = 𝜇, uTw = 1

This constrained optimization problem can be solved via the method of
Lagrange multipliers. We form the Lagrangian, but now with two multi-
pliers 𝜆1, 𝜆2, one for each constraint

(w, 𝜆1, 𝜆2) = wTCw − 𝜆1(𝝁Tw − 𝜇) − 𝜆2(uTw − 1)

and form the derivative of the Lagrangian relative to weight vector, w, and
set it to zero

2Cw − 𝜆1𝝁 − 𝜆2u = 𝟎

⇒ w =
𝜆1

2
C−1

𝝁 +
𝜆2

2
C−1u (3.8)

Since 𝝁
Tw = 𝜇 and uTw = 1, we can multiply this formula for w by 𝝁

T ,uT

to get the following two formulas

𝜆1

2
𝝁

TC−1
𝝁 +

𝜆2

2
𝝁

TC−1u = 𝜇

𝜆1

2
uTC−1

𝝁 +
𝜆2

2
uTC−1u = 1
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which can be expressed as

1
2

[
𝝁

TC−1
𝝁 𝝁

TC−1u
uTC−1

𝝁 uTC−1u

] [
𝜆1
𝜆2

]

=
[
𝜇

1

]

Let D be the inverse (if it exists) of the 2 × 2 matrix multiplying 𝛌

D =
[
d11 d12
d21 d22

]

=
[
𝝁

TC−1
𝝁 𝝁

TC−1u
uTC−1

𝝁 uTC−1u

]−1

We have [
𝜆1
𝜆2

]

= 2
[
d11 d12
d21 d22

] [
𝜇

1

]

Plugging back (𝜆1, 𝜆2) into the expression for w in Formula 3.8, we have

w∗(𝜇) = a𝜇 + b (3.9)

where
a = d11C−1

𝝁 + d21C−1u

b = d12C−1
𝝁 + d22C−1u

(3.10)

Note that the 2 × 2 matrix D and, hence, the vectors a,b only depend on 𝝁

and C, and have no dependence on the particular 𝜇 under consideration.
The optimal weights w∗(𝜇) characterize the least risky portfolio for a

given return 𝜇 and can be used to calculate the minimum feasible variance
or risk 𝜎∗(𝜇). The collection of minimum variance portfolios as a function
of 𝜇 maps out the minimum variance frontier (MVF).

EXAMPLE 2

For three risky assets, let R1 ∼ (4%,6%),R2 ∼ (6%,8%),R3 ∼ (5%,4%)
with correlation matrix

⎡
⎢
⎢
⎣

100% 60% −10%
60% 100% 40%
−10% 40% 100%

⎤
⎥
⎥
⎦

(Continued)
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Then

D =
[

10.592 −0.455
−0.455 0.020

]−1

=
[

2.356 52.651
52.651 1225.563

]

a =
⎡
⎢
⎢
⎣

−49.333
50.667
−1.333

⎤
⎥
⎥
⎦

b =
⎡
⎢
⎢
⎣

2.587
−2.413

0.827

⎤
⎥
⎥
⎦

3.2.10 Separation: Two-Fund Theorem

Formula 3.9 for the weights on MVF leads to a separation result commonly
referred to as the two-fund theorem: given two portfolios on the MVF, P1 ∼
(𝜇1, 𝜎1), P2 ∼ (𝜇2, 𝜎2), 𝜇1 < 𝜇2, each portfolio’s weight vector satisfies

w∗(𝜇i) = a𝜇i + b

For any portfolio on the MVF with expected return 𝜇, define

w =
𝜇 − 𝜇1

𝜇2 − 𝜇1
⇒ 𝜇 = w𝜇1 + (1 − w)𝜇2

we have
w∗(𝜇) = a𝜇 + b

= a[w𝜇1 + (1 − w)𝜇2] + [w + (1 − w)]b

= ww∗(𝜇1) + (1 − w)w∗(𝜇2)

which equals the weights of a portfolio made up of P1,P2 with respective
allocations (w,1 − w). Since 𝜇 was arbitrary, this shows that all portfolios
on the MVF can be composed of the two portfolios P1,P2.

Since the set of feasible portfolios consisting of two assets or portfolios
is a hyperbola, the two-fund theorem shows that MVF of the feasible set of
any number of risky assets is still a hyperbola (see Exercises). While for two
assets, the hyperbola is the feasible set, for three or more risky assets, there
can be portfolios inside the hyperbola, and the feasible set for three or more
risky assets consists of points on and inside the hyperbola.
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3.2.11 Risk-Free Asset

We have so far considered portfolios of risky assets, that is, 𝜎i > 0, for
all assets Ai. We can include a risk-free asset, A0, say a T-Bill or a CD,
whose 1-period rate of return, R0, is known with no uncertainty, 𝜎0 = 0.
In this case, the random variable R0 becomes a simple constant number:
R0 ∼ (𝜇0 = R0, 𝜎0 = 0).

If we construct a portfolio P from a risk-free asset with return R0 and
a risky asset/portfolio A with RA ∼ (𝜇A, 𝜎A) with weights (w,w1 = 1 − w),
we have

RP ∼ (wR0 + (1 − w)𝜇A, |1 − w|𝜎A)

which shows that the feasible set of a risk-free asset and risky one is a
straight line starting from (0,R0) corresponding to w = 1, and going through
(𝜎A, 𝜇A) corresponding to w = 0 in the (𝜎, 𝜇) (risk-reward) plane. If we allow
borrowing money at the risk-free rate of R0, the line extends past (𝜎A, 𝜇A)
corresponding to w < 0.

3.2.12 Capital Market Line

We previously showed that the Markowitz bullet is the feasible region of two
or more risky assets. The addition of a new asset—risk-free in this case—can
only expand our portfolio choices and enlarge the feasible set, since one can
always decide to invest zero in the new asset and, hence, recover the original
feasible set.

If we go through every risky portfolio P in the Markowitz bullet, and
consider portfolios constructed from P and the risk-free asset, we arrive at
the new feasible region: a triangular region with the vertex at (0,R0) and at
least one of the boundary lines just touching/kissing the Markowitz bullet,
see Figure 3.9. The new triangular region includes the all-risky Markowitz
bullet as expected.

The addition of the risk-free asset dramatically changes the shape of
the feasible set from a hyperbola to a triangular region. The new efficient
frontier, referred to as the capital market line (CML), is simply a straight
line that starts at the risk-free rate, (0,R0). If R0 is less than the mean of the
minimum variance portfolio, the line touches the top half of the Markowitz
bullet at only one point, (𝜎M, 𝜇M). The tangency portfolio M with return
RM ∼ (𝜇M, 𝜎M) is called the market portfolio (MP).
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Risk = Standard Deviation of Return (σ)
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FIGURE 3.9 Relationship between CML and the feasible region of risky assets.

Since CML is a straight line connecting the risk-free asset and MP, the
return R ∼ (𝜇, 𝜎) of any portfolio on CML must satisfy

𝜇 = R0 +
𝜇M − R0

𝜎M
𝜎

The slope of CML, (𝜇M − R0)∕𝜎M, is the measure of excess return required
by rational investors per unit of risk, and (𝜇M − R0)∕𝜎M × 𝜎 is the excess
return over the risk-free rate for a given level of risk and is called the risk
premium.

3.2.13 Market Portfolio

Let there be N investors where ith investor has Vi to invest, M risky assets,
and the weights of the tangency portfolio be given as (w1, . . . ,wM) where
∑M

j=1 wj = 1. Each investor with pick their spot on the CML by investing
(1 − 𝛼i) of their capital Vi in the risk-free asset, and 𝛼iVi in the tangency
portfolio. Each ith investor will then invest 𝛼iViwj in the jth risky asset.
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Summing over all investors, each jth risky asset has a market capitalization
of

∑N
i=1 𝛼iViwj. Moreover, the total risky market size is

∑N
i=1 𝛼iVi. Hence

Market capitalization of jth asset

Total market size
=

∑N
i=1 𝛼iViwj
∑N

i=1 𝛼iVi

= wj

justifying the term market portfolio.
Since the line connecting R0 to M has the highest slope, we can solve

for the weights of the market portfolio by solving the following constrained
optimization problem: maximize the slope (wT

𝝁 − R0)∕
√

wTCw subject to
wTu = 1, resulting in the following weights

wM =
C−1(𝝁 − R0u)

uTC−1(𝝁 − R0u)
(3.11)

The proof is left as an exercise.

Example 3

Continuing with the previous 3-asset case in Example 2, let the risk-free
rate be R0 = 3%. The weights of the market portfolio are

wM =
⎡
⎢
⎢
⎣

17.405%
6.449%

76.146%

⎤
⎥
⎥
⎦

with RM ∼ (3.45%,4.89%), resulting in 0.548 as the slope of the CML.

3.3 CAPITAL ASSET PRICING MODEL

What is the relationship between the market portfolio with return RM ∼
(𝜇M, 𝜎M), and a given risky asset or portfolio X with return RX ∼ (𝜇X, 𝜎X)?
The feasible set of portfolios constructed from just (M,X) is a hyperbola, and
is a subset of the feasible region when all risky assets were considered. This
sub-hyperbola is a continuous function and includes (𝜎M, 𝜇M). If its tangent
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at (𝜎M, 𝜇M) is not the CML, then there must be feasible portfolios either to
the left or right of (𝜎M, 𝜇M) and a bove CML, which cannot be since CML
is the efficient frontier (highest reward for any risk) of risk-free and all risky
assets. Therefore CML is the tangent of the sub-hyperbola at (𝜎M, 𝜇M) as
shown in Figure 3.10.

All that remains is to calculate the slope of the tangent (𝜎M, 𝜇M), i.e.,
the derivative of the sub-hyperbola evaluated at (𝜎M, 𝜇M). The return, RP ∼
(𝜇P, 𝜎P), for any portfolio P on the (M,X) feasible set satisfies

RP = wRX + (1 − w)RM

𝜇P = w𝜇X + (1 − w)𝜇M

𝜎P =
√

w2𝜎2
X + (1 − w)2𝜎2

M + 2w(1 − w)Cov(RX,RM)

RM

Rx
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ew

ar
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=
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Risk = Standard Deviation of Return (σ)

FIGURE 3.10 Proof of the CAPM formula.
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for some w. By the chain rule

d𝜇P

d𝜎P
=

d𝜇P

dw
dw
d𝜎P

=
d𝜇P∕dw

d𝜎P∕dw

By observing that P = M when w = 0, we can compute the desired slope

Slope =
d𝜇P

d𝜎P

|
|
|
|
|w=0

=
d𝜇P∕dw

d𝜎P∕dw

|
|
|
|
|w=0

=
𝜇X − 𝜇M

[w𝜎2
X − (1 − w)𝜎2

M + (1 − 2w)Cov(RX,RM)]∕𝜎P

|
|
|
|
|w=0

=
𝜇X − 𝜇M

(Cov(RX,RM) − 𝜎2
M)∕𝜎M

Setting the above to equal the slope of CML, (𝜇M − R0)∕𝜎M, we can
solve for 𝜇X to arrive at the Capital Asset Pricing Model (CAPM) formula,
[Sharpe, 1964]

𝜇X − 𝜇M

(Cov(RX,RM) − 𝜎2
M)∕𝜎M

=
𝜇M − R0

𝜎M

⇒
𝜇X − 𝜇M

(Cov(RX,RM) − 𝜎2
M)∕𝜎2

M

= 𝜇M − R0

⇒
𝜇X − 𝜇M

𝛽X − 1
= 𝜇M − R0

⇒ 𝜇X − R0 = 𝛽X(𝜇M − R0) (3.12)

where the term

𝛽X =
Cov(RX,RM)

𝜎2
M

= 𝜌X,M
𝜎X

𝜎M

is called the beta of the asset with respect to the market portfolio and can
be interpreted as a measure of systematic risk.

Writing the CAPM formula in terms of the correlation, we have

𝜇X − R0

𝜎X
= 𝜌X,M

𝜇M − R0

𝜎M

which shows that the ratio of the slope of R0 → 𝜇X line to the slope of R0 →
𝜇M line equals 𝜌X,M.
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3.3.1 CAPM Pricing

The CAPM formula can be used to provide today’s fair price of risky assets.
For a given asset X with 1-period return of RX over (0, t)

RX = X(t)∕X(0) − 1

⇒ 𝜇X = E[RX] = E[X(t)]∕X(0) − 1

⇒ X(0) = E[X(t)]
1 + 𝜇X

= E[X(t)]
1 + R0 + 𝛽X(𝜇M − R0)

(3.13)

which shows that today’s value of a risky asset is equal to its expected future
value discounted by the risk-free rate plus its risk premium

𝜇X − R0 = 𝛽X(𝜇M − R0)

3.3.2 Systematic and Diversifiable Risk

We can use the CAPM formula (3.12) to form a simple model for any asset
or portfolio’s random return and relate it to its beta. Specifically, let RX be
the random return of a portfolio X ∼ (𝜇X, 𝜎X). The CAPM formula based
on E[RM] − R0,E[RX] − R0 suggests a linear relationship between RX − R0
and RM − R0, leading us to posit the following simple linear regression

RX − R0 = 𝛼 + 𝛽(RM − R0) + 𝜖X (3.14)

where the residual error 𝜖X has zero mean and is uncorrelated to the mar-
ket’s (excess) return. We shall call Formula 3.14 as the econometric CAPM
to distinguish it from the CAPM formula (see Formula 3.12). Taking the
expected value of above regression formula, we get

𝜇X − R0 = 𝛼 + 𝛽(𝜇M − R0)

which, when compared to CAPM, shows that 𝛼 should equal 0, and 𝛽 should
equal 𝛽X. Taking variances of both sides of regression Formula 3.14, we have

𝜎2
X = 𝛽2

X𝜎
2
M + Var(𝜖X) (3.15)

We now have a decomposition of the portfolio risk: the term 𝛽2
X𝜎

2
M is called

the systematic risk and is driven by the correlation of the portfolio’s return to
the market’s return. The second component, Var(𝜖X), is called the specific,
diversifiable risk which would be zero if the portfolio was on the efficient
frontier of risk-free and risky assets (CML).
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Since 𝛽X = Cov(RX,RM)∕𝜎2
M = 𝜌X,M𝜎X∕𝜎M, Formula 3.15 shows the

following decomposition of variance

𝜎2
X = 𝜌2

X,M𝜎2
X + Var(𝜖X) (3.16)

3.4 FACTORS

CAPM as the culmination of mean-variance portfolio theory produces the
major insight that excess returns (over risk-free rate) on any investment can
be related to the excess return of one investment (market portfolio) via its
beta. The econometric linear model naturally suggested by CAPM allows
one to decompose the portfolio risk into two components: the risk due to
the market portfolio multiplied by the strength of its linkage (beta), and
portfolio-specific risk,

√
Var(𝜖X). As there are many securities (about 3,500

listed stocks in United States) and myriad potential portfolios composed of
them, this decomposition of the risk into one common systematic risk and
many specific risks is a major aid in reducing the dimension of the problem,
especially when the specific risk of an asset is small relative to its system-
atic risk.

The idea that returns on investments are driven by a few common drivers
gives rise to linear factor models where the excess returns on assets is mod-
eled as a linear decomposition due to a few common factors plus the asset’s
specific risk. Specifically, in a linear K-factor model, the return of each ith
asset is modeled as

Ri = 𝛼i + [𝛽i,1F1 + . . . + 𝛽i,KFK] + 𝜖i (3.17)

Note that once we find 𝛽i,⋅, the factor loading for each ith asset to each factor,
the systematic part of return is fully expressed via the (few) common factors.

3.4.1 Arbitrage Pricing Theory

At first look, Formula 3.17 is very similar to econometric CAPM, For-
mula 3.14, and econometric CAPM can be considered to be a 1-factor linear
model with market portfolio’s excess return, RM − R0, as its sole factor.
However, while econometric CAPM ends with Formula 3.17, arbitrage
pricing theory (APT) (Ross, 1976) starts with Formula 3.17 with general
unspecified factors and is further analyzed by imposing the following
structure

E[𝜖i] = 0, Cov(𝜖i, 𝜖j) = 0, max(Var(𝜖i)) is bounded

E[Fj] = 0, Cov(Fi,Fj) = 0, Var[Fj] = 1

Cov(𝜖i,Fj) = 0
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To understand the key insight of APT, we consider the 1-factor version
of the above with diversified portfolios and with the residuals 𝜖1,2 set to zero,
which can be justified asymptotically for large diversified portfolios via the
law of large numbers. In this simplified case, we have for any two arbitrary
pairs of portfolios P1,P2,

R1 = 𝛼1 + 𝛽11F1

R2 = 𝛼2 + 𝛽21F1

(3.18)

For a portfolio P with allocation w to the first portfolio, we have

RP = wR1 + (1 − w)R2

= [w(𝛼1 − 𝛼2) + 𝛼2] + [w(𝛽11 − 𝛽21) + 𝛽21]F1

For the choice
w = −𝛽21∕(𝛽11 − 𝛽21)

the term multiplying the random factor F1 becomes zero, resulting in a risk-
less portfolio with return

RP = 𝛼2 +
−𝛽21

𝛽11 − 𝛽21
(𝛼1 − 𝛼2)

APT’s main insight is that to avoid arbitrage, this riskless investment should
earn the risk-free rate, RP = R0

𝛼2 +
−𝛽21

𝛽11 − 𝛽21
(𝛼1 − 𝛼2) = R0

⇒
𝛼1 − R0

𝛽11
=

𝛼2 − R0

𝛽21
(3.19)

Since the two portfolios were arbitrary, we have

𝛼i − R0

𝛽i1
= 𝜆1

for some 𝜆1 for any ith asset, and the common ratio 𝜆1 is only due to the
factor F1. It can be shown (Ingersoll, 1987) to equal

𝜆1 = E[RZ1
] − R0 (3.20)

where Z1 is a portfolio whose F1 beta is 1, 𝛽.,1 = 1. The 1-factor APT model
leads to

E[Ri] − R0 = 𝛽i,1(E[RZ1
] − R0)
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which can be generalized to multiple factors as

E[Ri] − R0 =
K∑

j=1

𝛽i,j(E[RZi
] − R0) (3.21)

where Zj is the “𝛽⋅,j = 1” portfolio for jth factor.
Comparing APT Formula 3.21 with CAPM Formula 3.12, APT can be

considered a generalization of CAPM, albeit starting with completely differ-
ent assumptions (asymptotically arbitrage-free) rather than mean-variance
optimality in an equilibrium setting.

3.4.2 Fama-French Factors

The APT conditions for a factor model are applicable to any common driver
of excess returns, be they economic or derived from data. A commonly used
set of economic factors proposed by Fama and French [Fama and French,
1993] are:

■ Small Minus Big (SMB): It is observed that investments in stocks of com-
panies with small market capitalization have historically outperformed
investments in large capitalization companies. The SMB factor is based
on the return of a representative portfolio of small-cap stocks versus the
return of a representative portfolio of large-cap stocks.

■ High Minus Low (HML): The book value of a company is the value
of its assets minus its liabilities, referred to as shareholder’s equity in
a company’s balance sheet. The book value of a company is often dif-
ferent than its market value (price times outstanding shares). Growth
stocks tend to have high market value versus their book value, while
value stocks have high book value compared to their market value. Value
stocks have historically outperformed growth stocks and the HML fac-
tor is based on the return of a representative portfolio of value stocks
versus the return of a portfolio of growth stocks.

The addition of these factors to the market’s excess return gives rise to the
Fama-French three-factor econometric model for the excess return of an
asset

R − R0 = 𝛼 + 𝛽M(RM − R0) + 𝛽sFSMB + 𝛽vFHML + 𝜖 (3.22)

Additional economic factors, such as operating profitability (robust versus
weak, RMW), investments and asset growth (conservative versus aggressive,
CMA), and momentum (MOM), have been added to the original factors.
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3.4.3 Factor Investing

The Fama-French factors are based on the fundamentals attributes of firms
such as size, book value, and investments and are plausible explanations
of excess returns. Factor models also allow macroeconomic drivers such as
GDP growth rate, interest rates, and also purely statistical factors as drivers
and explanations of excess returns. When working with historical data to
determine factors and investment strategies, one needs to be keenly aware
of the usual dangers of overfitting, data mining, p-hacking, etc. This has
become more critical due to the advent of financial data science and the
ability to explore large amounts of historical data, which has given rise
to identification and quantification of more factors, and investment strate-
gies marketed as alternative or smart beta index products in the format of
low-cost, tax-efficient ETFs.

The identification and understanding of the factor exposure of a portfo-
lio allows an asset manager to selectively fine-tune the exposure by adding
or reducing the exposures. For example, a portfolio manager might perform
a regression analysis of their portfolio relative to the Fama-French factors
and decide that their portfolio is highly exposed to SMB factor (high 𝛽s). In
this case, they might decide to reduce that exposure by shorting assets with
high 𝛽s.

Another application of factor models is to use the factor loadings
obtained from a regression analysis to isolate the nonsystematic driver
of an asset’s return. For example, using the three Fama-French factors in
Formula 3.22, if for a given asset or portfolio we estimate its factor loadings
𝛽M, 𝛽s, 𝛽v via a regression analysis, we can form a new portfolio from the
original by shorting 𝛽M, 𝛽s, 𝛽v of the factor portfolios, with the resulting
return of 𝛼 as the excess return

RNew − R0 = 𝛼

Having stripped away the factor exposures, the new portfolio can be used
to get exposure to only the 𝛼 of the original asset, and we have created a
portable alpha portfolio.

3.4.4 PCA

Rather than positing and testing economic drivers as factors, a statistical
method to reduce the dimensionality of the drivers of asset returns is the
principal component analysis (PCA) method [Tsay, 2010]. In this method,
starting with a matrix of K observations of the returns of N assets’ (excess)
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returns, we subtract 1∕K
∑K

i=1 Rij from the jth column to arrive at the K × N
matrix of mean-adjusted returns

(1 ≤ i ≤ K)(1 ≤ j ≤ N) R = [Rij]

and compute the N × N sample covariance matrix C

C = 1
K − 1

RTR

The goal of PCA is to project the N-dimensional data onto the orthonormal
(perpendicular and of length 1) eigenvectors (see Figure 3.11).

Let (𝜆i, ei) be the ith eigenvalue-eigenvector pair for C, that is

Cei = 𝜆iei, eT
i ei = 1

with the eigenvalues sorted in decreasing size 𝜆1 > 𝜆2 > . . . > 𝜆N. Since C
is non-negative-definite—wTCw ≥ 0 for any weight vector w—it can be
decomposed as

C = E𝚲ET

e2 e1

FIGURE 3.11 PCA identification of eigenvectors.
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where 𝚲 is the diagonal matrix with the eigenvalues appearing on the diag-
onal in decreasing size, and E consists of the corresponding eigenvectors
appearing as the columns. It can be shown that the fraction of the variance
(sum of the diagonals of C) explained by the ith eigenvector ei is

𝜆i
∑N

i=1 𝜆i

Assume that the first M << N eigenvectors explain a large fraction, say 1 − 𝛼

for small 𝛼, of the variance

∑M
i=1 𝜆i

∑N
i=1 𝜆i

= 1 − 𝛼 ≈ 1

and let EM be the truncated N × M eigenvector matrix consisting of the
first M eigenvector columns. For a given 1 × N mean-adjusted sample return
vector Rt, the predicted value is its projection onto the first M statistically
significant factors

R̂t = RtEMET
M

with the difference as the residual

𝛜t = Rt − RtEMET
M

3.5 MEAN-VARIANCE EFFICIENCY AND UTILITY

Mean variance portfolio theory is based on the preference of undominated
portfolios: for a given level of risk, select the highest returning portfolios,
and for a given level of return, select the least risky portfolios. Can the
mean-variance efficiency be consistent with expected utility theory? Recall
that in the expected utility framework, optimal portfolio selection is equiv-
alent to maximizing the expected utility of future wealth. Since utility func-
tions are unique only up to linear transformations, for a 1-period investment
horizon, maximizing the expected utility of future wealth becomes equiva-
lent to maximizing the expected utility of return.

The following conditions are sufficient in making a utility function con-
sistent with mean-variance efficiency:

1. The utility function applied to returns depends only on the mean and
standard deviation.

2. The indifference curves—combinations of mean and variances that
provide the same expected utility level—are strictly convex and
increasing functions of 𝜎.
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FIGURE 3.12 Utility indifference curves.

3. As one increases the expected utility level, the indifference curves shift
up in the (𝜎, 𝜇) plane.

A utility function satisfying the above condition will achieve its maxi-
mum only on the efficient frontier and will reject any dominated portfolio,
hence, mean-variance efficient portfolios are optimal (see Figure 3.12).

3.5.1 Parabolic Utility

The parabolic utility function defined as U(x) = −(x − x0)2 for a constant
x0 > 0 satisfies the above conditions. To maximize E[U(R)], we observe

E[U(R)] = −E[(R − x0)2]

= −E[((R − 𝜇) + (𝜇 − x0))2]

= −(E[(R − 𝜇)2] + (𝜇 − x0)2 + (𝜇 − x0)E[R − 𝜇])

= −(𝜎2 + (𝜇 − x0)2)
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The indifference curves for a given level of expected utility c < 0 satisfy

𝜎2 + (𝜇 − x0)2 = −c

which is the equation of a circle centered at (0,x0) with radius
√
|c| in

the (𝜎, 𝜇) plane. Since the sign is negative, the larger the circle, the lower
the expected utility, and, hence, the maximum expected utility is achieved
by shrinking the radius until it just touches the efficient frontier. Different
investors can have different x0’s leading to different touch points.

While the parabolic utility satisfies these conditions, it is only concave
for x ≤ x0 and after achieving its maximum at x0 starts to decrease, and,
hence, is an unrealistic utility function.

3.5.2 Jointly Normal Returns

A more realistic case arises if the returns of risky assets are assumed to be
jointly normal, and the utility function a strictly increasing and concave
(risk-averse) function. Since the returns of the assets are jointly normal,
the return of any portfolio is the weighted average of these returns and is
also normal and fully characterized by its mean and variance. Hence, its
expected utility is a function of its mean and variance, satisfying condition
1 above. The other two conditions can be shown to hold since the utility
function is strictly increasing and strictly concave.

For a specific example, we can consider the exponential utility defined as
U(x) = 1 − e−cx for some constant c > 0. Let the return of a portfolio follow
a normal distribution R ∼ N(𝜇, 𝜎2). We have

E[U(R)] =
∫

(1 − e−cx) 1
√

2𝜋𝜎2
e−(x−𝜇)

2∕2𝜎2
dx

= 1 − 1
√

2𝜋𝜎2 ∫
e−cxe−(x−𝜇)

2∕2𝜎2
dx

= 1 − e−c(𝜇−c𝜎2∕2) 1
√

2𝜋𝜎2 ∫
e−(x−(𝜇−c𝜎2))2∕2𝜎2

dx (3.23)

= 1 − e−c(𝜇−c𝜎2∕2) (3.24)

where Formula 3.23 was obtained by completing the square in the exponent,
and noticing that the integral is the total area under the pdf of an N(𝜇 −
c𝜎2, 𝜎2) random variable, which should be 1.

Maximizing Formula 3.24 is equivalent to minimizing the term in the
exponent, which in turn is equivalent to maximizing 𝜇 − c𝜎2∕2 since c > 0.
The indifference curves of 𝜇 − c𝜎2∕2 for a given level of utility u satisfy
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𝜇 = u + c𝜎2∕2, which are parabolas with vertex (0,u), and satisfy condi-
tions 2 and 3 above. Different investors could have different cs resulting in
different touch points on the efficient frontier.

3.6 INVESTMENTS IN PRACTICE

CAPM and its econometric interpretation provide a guide and benchmark to
calculate the performance of an asset, portfolio, or asset manager. CAPM by
itself is a formula relating the expected return of a portfolio to the expected
return of the market portfolio via its beta in an equilibrium setting. The
empirical version of expected values derived from a historical time series of
actual returns can show deviations from their equilibrium counterparts. Two
of the common criticisms of mean-variance theory and CAPM are:

1. Mean-variance theory’s equilibrium results are based on the assump-
tion that all investors know and agree on an unchanging covariance
matrix of all asset returns (3,500 or so stocks in the United States, so a
3500 × 3500 matrix) and their means. This is a tall order and in prac-
tice empirical estimates of the covariance matrix and returns are used.
However, studies have shown that the tangency portfolio and slope of
the CML are quite sensitive to these covariances and slight estimation
variations can introduce large changes in efficient portfolios. Despite
this, most investment managers still use the mean-variance theory and
CAPM as a guide and starting point to portfolio selection.

2. The market portfolio’s weights are each asset’s market capitalization in
equilibrium. For constantly moving markets, when an asset becomes
overpriced, its market capitalization and weight rises, and funds newly
invested or rebalanced reinforce the overvaluation by allocating more
to an already overpriced asset. Similarly, undervalued assets are further
punished and their valuation pushed lower.

3.6.1 Rebalancing

Since rational investors are supposed to make investments on the CML,
a rule-of-thumb investment advice is to allocate 40% to risk-free invest-
ments (bonds) and 60% to risky assets (stocks), and maintain this allocation
by periodically rebalancing. A variation is to subtract one’s age from 100
(recently upgraded to 110 due to increased longevity) and use that as the
allocation to stocks, so in early years one invests in riskier assets and enjoys
their expected long-term high returns. As one ages, the recommended allo-
cation shifts toward safer investments.
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Maintaining a prescribed allocation through rebalancing has the fortu-
nate effect of buy-low, sell-high. For example, in the standard 60-40 portfo-
lio, if stocks go up, then to maintain the 60-40 allocation, one needs to sell
some of the stock holdings and buy bonds (sell high). Similarly, if stocks go
down, one needs to buy more (buy low). A similar situation holds for the
bond allocation.

3.6.2 Performance Measures

Recognizing that CAPM and APT are equilibrium results on returns, how
does one evaluate actual returns? Starting with the regression model in For-
mula 3.14, we can calculate Jensen’s alpha,

𝛼̂ = (𝜇̂X − R̂0) − 𝛽X(𝜇̂M − R̂0)

where x̂ means the empirically estimated value of the x. According to
CAPM, the equilibrium value of 𝛼̂ should be zero. Therefore, if a portfolio
shows a persistent positive 𝛼̂, this can be construed as the portfolio’s
superior beta-adjusted return. Investment and portfolio managers tout their
ability to beat the market and to generate “alpha,” thereby attracting more
investments and increasing assets under management (AUM) and enjoying
the associated AUM fee income.

A similar measure inspired by CAPM is Treynor’s ratio

T̂ =
𝜇̂X − R̂0

𝛽X

which is the beta-adjusted excess return of a portfolio. According to CAPM,
the above should equal the market portfolio’s excess return, 𝜇M − R0. A port-
folio showing persistent beta-adjusted excess return higher than the market’s
is an attractive investment.

The Sharpe ratio is the risk-adjusted empirical return of a portfolio and
the empirical proxy for the slope of the line from the risk-free asset to the
portfolio in the risk-reward (𝜎, 𝜇) plane.

m̂ =
𝜇̂X − R̂0

𝜎̂X

According to the mean-variance theory, the CML has the highest slope, so
any portfolio exhibiting persistent higher empirical slope than CML’s slope,
(𝜇M − R0)∕𝜎M, is indicative of a superior risk-adjusted return.
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3.6.3 Z-Scores, Mean-Reversion, Rich-Cheap

Regression analysis is the workhorse for extracting estimates of model
parameters. Once estimated, the residuals are centered around their means
and divided by their standard deviation to arrive at a standardized measure
called the Z-score: the number of standard deviations a dependent variable
is away from its mean where the mean and standard deviation are either
known or calculated/estimated from the data.

It is often assumed that Z-scores revert to 0, resulting in mean-reversion:
undervalued assets with high Z-scores for their returns are cheap and bought
by astute investors bringing their values back to their equilibrium values.
Similarly rich assets with negative Z-scores for their returns are shorted
bringing their value back to equilibrium.

This is a version of efficient market hypothesis (EMH), which posits that
deviations from market equilibrium are short-term and will be arbitraged
away, thereby restoring markets to equilibrium state and conditions.

3.6.4 Pairs Trading

Pairs trading is a common trading strategy where one buys a cheap asset
while shorting a related rich asset based on the price difference. Specifically,
for two stocks in the same sector, say technology, it is assumed that their
prices are mainly driven by the same common factors and any large price
discrepancy is temporary and will fade away. With this assumption, trading
entry and exit signals are constructed based on the discrepancy.

The following shows the typical steps for constructing a simple pairs
trade:

1. Obtain the historical prices of the two stocks, adjusted for any splits,
dividends: let X1, . . . ,XN be the adjusted price of the first asset, while
Y1, . . . ,YN the adjusted price of the second asset.

2. Graph the adjusted price series (Xi,Yi) and create a scatter plot.
3. Perform a regression analysis to obtain the slope and examine the statis-

tics to ensure that the series are related: Y = b0 + b1X+Noise.
4. Create trading signal Si = Yi − b1Xi.
5. Standardize the Si series by subtracting its empirical mean and divid-

ing the result by the empirical standard deviation to come up with the
Z-score series.

6. If the Z-score is high, that means Yi is too high: short Asset 2 while
buying b1 units of Asset 1 for each 1 unit of Asset 2. Similarly, if the
Z-score is too low, buy Asset 2 and short b1 units of Asset 1.

7. Create profit-taking (exit winning trades) and stop-loss (exit losing
trades) signals based on the number of favorable or unfavorable
changes in the Z-score.
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Example 4

Figures 3.13 through 3.15 show the result of a pairs trade based on
a 5-year monthly history of Amazon (AMZN) and Walmart (WMT).
Table 3.3 shows the statistics of regression analysis, indicating a high R
squared of 90.3% and confidence of at least 99.9539% = 1 − 0.000461
that the slope b1 is significant.
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FIGURE 3.13 5-year monthly price history of Amazon (AMZN), Walmart
(WMT).
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FIGURE 3.14 Walmart (WMT) versus Amazon (AMZN).
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FIGURE 3.15 Z-Score for Amazon-Walmart pair trade.

TABLE 3.3 Regression statistics.

R2 0.903

F statistic 539.586

Significance (F) 0.000461

Intercept, b0 45.79

Slope, b1 0.02875

t statistic (b1) 23.229

P-value (b1) 0.000461

3.6.5 Risk Management

It is often said that investment is all about risk management. Successful
investors, traders, and gamblers know how to play the odds and how to
size their bets. Optimal bet sizes, strategies, stopping times, and game dura-
tions in games of chance have been extensively studied under the rubric of
gambling or betting systems [Dubins and Savage, 1965].

3.6.5.1 Gambler’s Ruin Consider a game where you will win/lose $1 with
probability p,1 − p, for example, a loaded coin toss with Prob[Heads] = p,
and you win/lose if the coin lands Heads/Tails. Assume that you begin with
an initial amount a ≥ 0 and will play this game until you reach a target
amount b ≥ a or you lose all your money a, that is you get ruined. What is
the probability of success, that is, reaching your target b before losing a?
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Let Sa be the probability of success when starting with initial state a. We
can form the following linear homogeneous recurrence equation

(0 < a < b) Sa = pSa+1 + (1 − p)Sa−1

with S0 = 0, Sb = 1. Using the fundamental solution for recurrence, Sn = xn,
we have

px2 − x + (1 − p) = 0

as the characteristic equation. Let 𝜌 = (1 − p)∕p. If 𝜌 ≠ 1, the characteristic
equation has two distinct roots, 1, 𝜌, leading to

Sn = A × 1n + B × 𝜌n

for constants A,B. When 𝜌 = 1, the characteristic equation has a repeated
root equaling 1, and

Sn = A × 1n + B × n × 1n

Invoking the boundary conditions lets us solve for A,B

{
A = 0,B = 1∕n when 𝜌 = 1
A = −1∕(𝜌N − 1),B = 1∕(𝜌N − 1) when 𝜌 ≠ 1

to arrive at

P[Success] = Sa =
⎧
⎪
⎨
⎪
⎩

a∕b, if 𝜌 = 1 (p = 1∕2)
𝜌a − 1

𝜌b − 1
if 𝜌 ≠ 1

(3.25)

For example, with initial capital a = $900 and the modest goal of
b = $1,000, the probability of success in a fair game, 𝜌 = 1, is pretty
good, a∕b = 90%. If the odds are slightly against you, say p = 18∕38,
𝜌 = 20∕18—typical odds for a red/black bet at a casino roulette game—then
the probability of success drops to 0.00003! Formula 3.25 shows that even
if odds are only slightly against you, you are mostly like ruined.

3.6.5.2 Kelly’s Ratio In the Gambler’s Ruin case, one could only bet $1 at
each turn. Is there a way of improving one’s chances by judiciously sizing
one’s bets? Specifically, let us follow the strategy of betting a constant frac-
tion 𝛼 of one’s wealth, so that our wealth V increases by V𝛼 to V(1 + 𝛼) with
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probability p, and decreases by −V𝛼 to V(1 − 𝛼) with probability 1 − p at
each turn. Starting with unit wealth V0 = 1, after N tosses, one has

VN = (1 + 𝛼)n(1 − 𝛼)N−n

where n is the number of wins (getting Heads). Taking log of both sides and
dividing by N we have

1
N

ln VN = n
N

ln(1 + 𝛼) + (1 − n
N
) ln(1 − 𝛼)

By the law of large numbers, p = limNn∕N, and the long-term return is

R = lim
N

1
N

ln VN = p ln(1 + 𝛼) + (1 − p) ln(1 − 𝛼)

To maximize this return, we set its derivative to 0

dR
d𝛼

=
p

1 + 𝛼
−

1 − p
1 − 𝛼

= 0

resulting in 𝛼∗ = 2p − 1 as the optimal fraction to maximize R for p > 1∕2.
The optimal fraction 2p − 1 is known as Kelly’s ratio [Kelly, 1956]. In prac-
tice, one might employ a fraction of Kelly’s ratio, for example a half-Kelly,
1∕2(2p − 1), to smooth out the large swings in one’s PnL.

If p ≤ 1∕2, one should either not play, or, if one insists, it is shown that
bold play is optimal, that is, one should bet all one’s money at each try until
one hits their target [Billingsley, 1979].
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EXERCISES

1. Using the formulas for ARA and RRA
(a) Show that exponential utility: U(x) = 1 − e−cx for some c > 0, has

constant ARA (CARA).
(b) For power utility: U(x) = (x1−𝛼 − 1)∕(1 − 𝛼) for 𝛼 ≠ 1

i. Show that power utility is concave (risk averse) when 𝛼 > 0 and
convex (risk seeking) when 𝛼 < 0.

ii. What type of behavior is modeled when 𝛼 = 0?
iii. Show that power utility has constant RRA (CRRA).
iv. Using L’Hôpital’s rule, show that power utility reduces to log

utility, U(x) = ln(x), when 𝛼 = 1.
2. An investor has a base 10 log utility function: U(x) = log10(x). Invest-

ment 1 has payoff (1, 100) with probabilities (0.8, 0.2). Investment 2
has payoff (10,1000) with probabilities (0.99, 0.01).
(a) Which investment is mean-variance dominant?
(b) Which investment has higher expected utility?

3. Assume you have $100,000 to invest for one year, and decide to allocate
60% to an all equity fund trading at $400 per share and 40% to a bond
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fund trading at $100 per share. After one year, the equity fund is trading
at $450 per share and the bond fund is trading at $95 per share.
(a) What is the value of your portfolio after one year?
(b) What is the 1-year rate of return on your portfolio?
(c) What are the allocations of your portfolio after one year?
(d) How do you rebalance your portfolio to maintain allocations at

60/40?
4. Show the steps to get from Formula 3.4 to Formula 3.5.
5. Let R1 ∼ (𝜇1 = 4%, 𝜎1 = 10%) and R2 ∼ (𝜇2 = 6%, 𝜎2 = 6%), 𝜌(R1,R2) =

25%, where R1,R2 are the returns of two assets.
(a) Graph the feasible set (𝜎P, 𝜇P) of all portfolios formed from the two

assets.
(b) Calculate the weights (w∗

1,w
∗
2) of the minimum variance portfolio

(MVP) formed from the two assets.
(c) What is the standard deviation and expected value of the MVPs

return?
(d) Although Asset 1 is dominated by Asset 2, depending on the corre-

lation, it can be part of an efficient portfolio with positive weight.
Identify the set of correlations where this can be the case. Hint: The
efficient frontier starts at the MVP, so find MVP’s with w∗

1 = 0.
6. The canonical form of a shifted hyperbola in the (𝜎, 𝜇) plane is 𝜎2∕c2

𝜎 −
(𝜇 − 𝜇0)2∕c2

𝜇 = 1.
(a) Derive the expression for the two asymptotes of the shifted hyper-

bola (𝜇 intercept, slopes).
(b) Formula 3.9 shows that the weights for any portfolio on the MVF

are a linear function of 𝜇, w∗(𝜇) = a𝜇 + b. Using this, show that the
variance can be expressed as 𝜎2(𝜇) = A𝜇2 + B𝜇 + C for all points
on the MVF, and express the parameters A,B,C in terms of a, b, c.
Hint: For any 𝜇, the MVF’s variance is

𝜎2(𝜇) = (a𝜇 + b)TC(a𝜇 + b)

= A𝜇2 + B𝜇 + C

(c) Complete the square above to show that MVF can be written as
𝜎2∕c2

𝜎 − (𝜇 − 𝜇0)2∕c2
𝜇 = 1 and, hence, is a hyperbola, and express

c𝜎, c𝜇, 𝜇0 in terms of A,B,C.
(d) For the two risky assets case, R1 ∼ (𝜇1, 𝜎1) and R2 ∼ (𝜇2, 𝜎2) with

correlation 𝜌, 𝜇 = w𝜇1 + (1 − w)𝜇2 and, hence, w is a linear function
of 𝜇

w = 1
𝜇1 − 𝜇2

𝜇 −
𝜇2

𝜇1 − 𝜇2
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and the variance can be expressed as 𝜎2 = A𝜇2 + B𝜇 + C. Express
A,B,C and the asymptotes in terms of 𝜇1, 𝜇2, 𝜎1, 𝜎2, 𝜌.

7. Given three assets whose returns’ means, variances, and correlations are

𝝁 =
⎡
⎢
⎢
⎣

5%
6%
3%

⎤
⎥
⎥
⎦

𝝈 =
⎡
⎢
⎢
⎣

6%
8%

10%

⎤
⎥
⎥
⎦

𝝆 =
⎡
⎢
⎢
⎣

100% 95% 90%
95% 100% 80%
90% 80% 100%

⎤
⎥
⎥
⎦

(a) Compute a,b in Formula 3.10.
(b) What is the MVF evaluated at 𝜇 = 6%?
(c) Graph the MVF for 0 ≤ 𝜇 ≤ 12% in the risk-reward (𝜎, 𝜇) plane.
(d) Given a risk-free asset with return R0 = 3%, use Formula 3.11 to

calculate the weights of the market portfolio and its risk and reward
(𝜎M, 𝜇M), and the slope of the capital market line (CML).

8. Assume that the risky returns are jointly normal and use the method
of Lagrange multipliers to find the optimal location on the MVF for
an investor with exponential utility, that is, maximize 𝜇 − c𝜎2∕2 (see
Section 3.5.2) subject to

𝜎2

c2
𝜎

−
(𝜇 − 𝜇0)2

c2
𝜇

= 1

9. To derive Formula 3.11, we observe that the slope of the Capital Market
Line connecting R0 to M is the maximum among all lines connecting R0
to any feasible portfolio. The weights for MP are derived by solving the
following: maximize the slope (wT

𝝁 − R0)∕
√

wTCw subject to wTu = 1.
Derive the formula by completing the following steps:
(a) Form the Lagrangian and using (𝜕∕𝜕w)wTCw = 2Cw and the chain

rule, show

𝜕
𝜕w

=
𝝁 − Cw

wTCw
(wT

𝝁 − R0)
√

wTCw
− 𝜆u

and set the Lagrangian to zero to get

𝝁 −
wT

𝝁 − R0

wTCw
Cw = (𝜆

√
wTCw)u

(b) Find the vector v so that when you pre-multiply both sides by vT ,
you end up with

𝜆 = R0∕
√

wTCw

𝝁 −
wT

𝝁 − R0

wTCw
Cw = R0u
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(c) Find the matrix A so that when you pre-multiply both sides of the
above by A, you end up with

wT
𝝁 − R0

wTCw
w = C−1(𝝁 − R0u) (3.26)

(d) Find the vector v so that when you pre-multiply both sides of For-

mula 3.26 by vT , you get an expression for the term
wT

𝝁 − R0

wTCw
multiplying w, and divide both sides of Formula 3.26 by this expres-
sion to establish the result

w =
C−1(𝝁 − R0u)

uTC−1(𝝁 − R0u)

10. Let the risk-free rate be 3% and the market return and risk be (𝜇M =
8%, 𝜎M = 10%). Given an asset with 𝛽 = 0.8 and a return standard devi-
ation of 12%, you expect its price to be $110 in one year.
(a) According to CAPM, what is today’s price of the asset?
(b) What is the correlation between the asset and market returns?
(c) What fraction of the variance of the asset’s return is diversifiable?

11. According to CAPM, 𝜇X is a linear function of 𝛽X. The graph of 𝜇X
versus 𝛽X in the (𝛽, 𝜇) plane is called the security market line (SML).
(a) What is the coordinate of the risk-free asset in the (𝛽, 𝜇) plane?
(b) What is the coordinate of the market portfolio in the (𝛽, 𝜇) plane?
(c) For a portfolio X on the CML with RX = wR0 + (1 − w)RM, what

is its coordinate in the (𝛽, 𝜇) plane?
(d) Can the beta of a portfolio be negative? Can it be larger than 1?

Explain.
(e) Show that the beta of a portfolio is the weighted average of the betas

of the portfolio’s assets, where the weights are the asset allocations
of each asset in the portfolio.

(f) Show that the diversifiable risk, Var(𝜖X), of a portfolio X on the CML
is zero.

12. For two assets, let their 1-year simple returns, R1,R2, be independent
and identically distributed as follows

P[Ri = r] = p, P[Ri = −r] = 1 − p

for some r > 0 and 0 < p < 1. A risk-averse investor with strictly con-
cave utility function, U′′ < 0, is considering a 1-year investment in a
portfolio P of these two assets with allocation w

RP = wR1 + (1 − w)R2
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Starting with unit initial wealth W0 = 1, the wealth after 1 year is

W1 = W0 × (1 + RP) = 1 + wR1 + (1 − w)R2

Find the optimal allocation to maximize expected utility of future
wealth, E[U(W1)], via the following steps:
(a) Write the explicit expression for E[U(W1)] in terms of p, r,w

E[U(W1)] = p2U(1 + wr + (1 − w)r)

+ p(1 − p)U( . . . ) + (1 − p)pU( . . . )

+ (1 − p)2U(1 − wr − (1 − w)r)

(b) Using the chain rule, calculate dE[U(W1)]∕dw as a function of
w, r,p,U′(⋅) and set it to zero.

(c) Since U′′ < 0, U′(⋅) is a strictly decreasing function, it implies
U′(x1) = U′(x2) if and only if x1 = x2. Use this result to find w∗ that
makes dE[U(W1)]∕dw equal zero.

(d) Since U′′(⋅) < 0, show that E[U(W1)] is maximized at w∗ by showing
d2E[U(W1)]∕dw2 evaluated at w∗ is ≤ 0.

(e) What are the optimal weights (w∗,1 − w∗)?
13. It is argued that in the commonly used 60/40 portfolio (60% stocks,

40% bonds), since stocks are much riskier than bonds, the stocks’ rel-
ative contribution to the portfolio risk is too high. A remedy is to con-
struct portfolios with equal risk contribution.

For a portfolio P, the marginal contribution of risk due to ith asset
with allocation wi is defined as 𝜕𝜎P∕𝜕wi and its risk contribution as
wi𝜕𝜎P∕𝜕wi. A portfolio with equal risk contribution from each asset is
called an equal risk parity (ERP) portfolio.
(a) Using 𝜕𝜎2

P∕𝜕w = 2Cw and the chain rule, show

𝜕𝜎P

𝜕w
= Cw

𝜎P

⇒ 𝜎P = wT 𝜕𝜎P

𝜕w

which shows the decomposition of portfolio risk as the weighted
average of the marginal risk contribution of each asset.



Trim Size: 6in x 9in Sadr838401 c03.tex V1 - 03/18/2022 3:34pm Page 105�

� �

�

Investment Theory 105

(b) For a two-asset portfolio P, RP = w1R1 + w2R2, with Ri ∼ (𝜇i, 𝜎i)
and correlation 𝜌 = 𝜌(R1,R2), solve for the positive weights w1,w2
of the ERP portfolio.

(c) Using RBonds ∼ (3%,4%),RStocks ∼ (8%,20%), and 𝜌 = 10%, compute
the risk and return of the ERP and 60/40 portfolios.

14. Starting with N assets, construct two portfolios P1,P2 with correspond-
ing allocations {w11, . . . ,w1N}, and {w21, . . . ,w2N}. Create a new
portfolio P from P1,P2 with corresponding allocations of w1,1 − w1 to
P1,P2. What is the allocation of the ith asset in P?

15. Prove Jensen’s inequality for discrete random variables via induction as
follows. For a convex function f :
(a) Let a random variable X take on two values x1 < x2 with corre-

sponding probabilities p1,p2. Show that f (E[X]) ≤ E[f (X)].
(b) Assume that E[f (X)] ≥ f (E[X]) for any discrete random variable X

that takes on N values. Show that E[f (X)] ≥ f (E[X]) for any discrete
random variable Y that takes on N + 1 values.

16. Arithmetic versus geometric average.
(a) Let a1, a2 > 0 and show that

a1 + a2

2
≥
√

a1a2

(b) Use Jensen’s inequality applied to the log function to show that the
arithmetic average dominates the geometric average

1
N

N∑

i=1

ai ≥ (a1 × . . . × aN)1∕N, ai > 0

(c) Let rn be the periodic return of an asset rn = An∕An−1 − 1. If the asset
value cannot go negative, then 1 + rn ≥ 0. What can you say about
the N period arithmetic average, rA, defined via

1 + rA = 1
N

N∑

i=1

(1 + ri)

versus the compounded average, rG, defined via

(1 + rG)N = (1 + r1) × . . . × (1 + rN)

of the periodic returns?
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PYTHON PROJECTS

1. Install numpy and matplotlib packages.

pip install numpy
pip install matplotlib
import math
import numpy as np
import matplotlib.pyplot as plt

2. Create the graph of the feasible region of two risky assets and the asymp-
totes of the hyperbola.

def feasible_region2(mu1, mu2, sigma1, sigma2, rho):
mu_vector = np.empty(0)
sigma_vector = np.empty(0)
for w1 in np.linspace(-5,5,500):

w2 = 1.0- w1
mu = w1 * mu1 + ....
sigma = math.sqrt( w1**2 * sigma1**2 + ...)
mu_vector = np.append(mu_vector, mu)
sigma_vector = np.append(sigma_vector, sigma)

# Asymptotes

mu0 = (mu1 + sigma2**2 + mu2 * simga1**2 - ...) /
(sigma1**2 + ...)

slope = ....
sigma_axis = np.linspace(0, 0.25, 200)
asymp1 = mu0 + slope * sigma_axis
asymp2 = mu0 - slope * ....

# Plot

plt.plot(sigma_vector, mu_vector, "k")
plt.plot(sigma_axis, asmpy1, "k-", linewidth = 0.1)
plt.plot(sigma_axis, asmpy2, "k-", linewidth = 0.1)

3. Multiple risky assets. Create the graph of the minimum variance frontier
of risk-free and risky assets, the capital market line, and plot random risky
portfolios.

def plot_MVF(mu, sigma, corr, num_rands):
# mu and sigma are 1xN vectors of mean and standard dev.
# vectors for N risky assets, corr is the NxN corr matrix
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# Create the covariance matrix and its inverse
sd = np.diag(sigma)
C = np.matmult(np.matmul(sd,corr),sd)
C_inv = np.linalg.inv(C)

# Find weights and mean, stdev of MVP, u is the unit vector
w_MVP = np.matmul(C_inv,u)/...
mu_MVP = np.matmul(w_MVP, mu)
sigma_MVP = math.sqrt(np.matmul(...))

# Select a risk free rate that is less than mu_MVP
# Find weigths and mean, stdev of Market portfolio
# and slope of CML
R0 = 0.6 * mu_MVP
w_M = np.matmul(C_inv,mu-R0*u) / ...
mu_M = ...
sigma_M = ...
CML_slope = (mu_M - R0) / sigma_M

# Create the 2x2 D_inv and D matrices
D_inv = np.zeros((2,2))
D_inv[0,1] = np.matmul(np.matmul(mu, C_inv), mu)
...
D_inv[1,1] =np.matmul(np.matmul(u, C_inv), u)
D = np.linalg.inv(D_inv)

# Compute the a, b vectors
a=D[0,0] * ...
b=D[1,0] * ...

# Compute MVF
mu_MVF = np.empty(0)
sigma_MVF = np.empty(0)
for x in np.linspace(mu_MVP - 0.10, mu_MVP + 0.10, 100):

mu_MVF = np.append(mu_MVF, x)
w = a * x + b
s_w = math.sqrt(np.matmul(np.matmul(w,C),w))
sigma_MVF = np.append(sigma_MVF, s_w)

# Create random risky portfolios
mu_rand = np.empty(0)
sigma_rand = np.empty(0)
for r in np.arange(1,num_rands):

# pick N(0,1) random variables, make them add up to 1
w_rand = np.random.randn(np.size(mu))
w_rand[-1] = 1 - np.sum(w_rand[0:w_rand.size-1])
mu_rand = np.append(mu_rand, np.matmul(w_rand, mu))
sigma_rand = np.append(sigma_rand, math.sqrt(...))
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# Plot everything
plt.figure(figsize=(12,9))
plt.xlim([0,5*sigma_MVP])
plt.ylim([mu_MVP-0.10,mu_MVP+0.10])

plt.plot(sigma_MVF,mu_MVF,"k")

s=np.linspace(0, 5* sigma_MVP, 100)
plt.plot(s,R0+CML_slope * s, "k", linewidth=2)

plt.scatter(sigma_rand, mu_rand, c='k', marker=".")

4. Sample data for three risky assets, and 10,000 random risky portfolios
(see Figure 3.16).

# Sample data
mu=np.array([0.05, 0.06, 0.03])
sigma=np.array([0.06, 0.08, 0.10])
corr = np.array([[1,0.95,.90],[0.95,1,.80],[.90,.80,1]])
plot_MVF(mu, sigma, corr, 10000)

0.000

–0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.025 0.050 0.075 0.100 0.125 0.150 0.175

FIGURE 3.16 10,000 risky portfolios.
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CHAPTER 4
Forwards and Futures

Derivatives, or contingent claims, are contracts based on an underlying
asset or transaction. The characteristics and design of these contracts can

range from an agreement to buy or sell an asset in the future at a specific
price to complex structured products with complicated payoffs.

4.1 FORWARDS

We shall start with the simplest contingent claim, a forward contract. On a
given trading day (t), in a spot transaction between two counterparties—say
exchange of money for an asset (buy/sell)—the transaction will happen
at t. In a forward contract, the terms of the transaction are set and agreed
to at t, but the transaction is shifted to some later forward date, T > t. For
example, on trade date t, in a spot transaction one can buy 100 shares of a
stock for its current (spot) market price, A(t). Alternatively, on same trade
date t, one can agree to buy the 100 shares in 3 months T = t + 3 months
for some price K.

Forward contracts allow one to lock in the terms of a future transaction.
Examples of the usage of forward contracts include

■ An airline company might want to lock its future jet fuel purchase price
a few months ahead of a peak travel season.

■ An agricultural company might want to lock in the sales price of its
products before the harvest and remove the future price uncertainty.

■ The corporate treasurer of a company with large anticipated interna-
tional sales might want to lock in the exchange rate at which future
sales proceeds can be repatriated.

■ A home buyer might ask their bank for a rate lock in a home mort-
gage loan in anticipation of successful completion of multiple steps
(appraisal, title search, insurance, inspection, scheduling the closing,
etc.), which could easily take a few months to complete before the
actual purchase.

109
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These are examples of forward contracts used for hedging. One could also
use forward contracts for speculation: if one believes that the stock market
is going up in three months, one could enter into a 3-month forward con-
tract allowing the speculator to buy an index, say on the S&P 500, for a
specific price.

As both counterparties are agreeing to a future transaction, how should
they set the terms and how should they value the transaction in face of
uncertainty? For example, if the contract is for sale of a stock for K by
one counterparty to the other, the selling counterparty would be quite upset
and the buyer quite happy if the actual future price turns out to be much
higher than K. Similarly, the buyer will be quite upset and the seller happy
if the future price turns out to be much lower than K. One’s gain is the
other’s pain.

We now have the five salient moving parts of a forward contract:

1. Underlying transaction, usually a buy/sell of an asset, A.
2. Counterparties (e.g., buyer and seller, lender and borrower).
3. Agreement date t.
4. Forward transaction date T > t.
5. Terms of the agreement, usually price, K.

4.1.1 Forward Price

Depending on K, the value of a forward contract, VFA(t,T,K), can be pos-
itive or negative. In the previous S&P 500 example, from the buyer’s point
of view, if K is too large, then the forward contract is an agreement to buy
an asset in the future at an inflated price, and, hence, has negative value,
VFA(t,T,K) < 0. Similarly, if K is too small, then one is buying an asset in
the future on the cheap, and the value of the forward contract is positive,
VFA(t,T,K). The price K, which would make the contract have zero value,
is called the forward price of the asset, and is denoted by FA(t,T). We have

VFA(t,T,FA(t,T)) = 0

When the forward contract is done at the forward price, there is no
exchange of money at t, just the commitment of the counterparties to honor
the terms of the transaction at T. Note when t = T, a forward transaction
is a spot transaction, and spot prices and forward prices are the same:
A(t) = FA(t, t) = FA(T,T) = A(T).

The difference between the forward price and the spot price is called the
basis. Depending on the market, the basis is defined as either A(t) − FA(t,T)
(bond markets) or FA(t,T) − A(t) (foreign exchange, equity index, crypto).
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4.1.2 Cash and Carry

One might think that determining the fair forward price would involve fore-
casting the future price of the asset. However, a simple cash-and-carry argu-
ment shows that we can determine the forward price without resorting to
forecasting. The seller in a forward contract has to deliver the asset at T for
the contracted price K. The seller can replicate this liability as follows: buy
the asset today t for A(t) by taking a loan of size A(t) with maturity T and
hold on to the asset until T. At T, deliver the asset, receive K, and repay
the loan plus the interest. As long as K equals the loan and the interest,
the seller will have no risk, and should charge 0 at t to enter into the for-
ward contract.

For notation convenience, we shall use continuous compounding inter-
est rate r, and we shall further assume that interest rates are deterministic
and constant. In this case, the above cash and carry argument implies that
the forward price must equal

K = FA(t,T) = A(t)er(T−t) (4.1)

4.1.3 Interim Cash Flows

The cash-and-carry argument can be generalized for assets with known
interim cash flows between the spot date t and the forward date T. Since
the holder of the asset will benefit from these known cash flows, their value
should be subtracted from the value in Formula 4.1. Specifically, if the
underlying asset has known cash flows CF1, . . . ,CFN with payments dates
t < T1 < . . . < TN < T, then the cash flows are future valued from their
payment dates Ti to the forward date and their benefit subtracted from
Formula 4.1

K = FA(t,T) = A(t)er(T−t) −
N∑

i=1

CFie
r(T−Ti)

The forward price then is the t price plus the cost of carrying the asset minus
any income that accrues to the holder of the asset, properly future valued
to the forward date. For example, for a dividend-paying stock with known
discrete dividends, the future value of the dividends must be subtracted from
the carrying cost. Similarly, the future value of any coupon payments must
be subtracted from the financing cost of a coupon bond.

4.1.4 Valuation of Forwards

What happens to the value of a forward contract as time goes by? Let us
assume that the continuously compounded interest rate r for borrowing and
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lending is constant and known, and let us consider a forward contract where
at inception t = 0 and the price K is set to the forward price K = FA(0,T),
making the contract have 0 value at t = 0.

While K remains fixed for this contract, as time t goes by, the spot price
A(t), and, hence, the forward price FA(t,T) = A(t)er(T−t) change, and the
value of a forward contract, VFA(t,T,K), will no longer remain at zero.
To value the contract, we observe that at any time t ≤ T, the original agree-
ment with K = FA(0,T) can be offset by a zero-cost contract at FA(t,T). For
example, the buyer in the original contract can enter into a new zero-cost
forward contract as the seller with price set to FA(t,T). The net transaction
at T is to buy the asset for K, and sell it at FA(t,T) with economic value
FA(t,T) − K at T, which can be PV’ed to t, resulting in

VFA(t,T,K) = e−r(T−t)[FA(t,T) − K]

The profit and loss (PnL) of a forward contract between two dates t1 < t2
is the change in the value of the contract

VFA(t2,T,K) − VFA(t1,T,K)

For a forward contract initiated at t = 0 at its initial forward value,
K = FA(0,T), the total PnL from t = 0 to t = T is

Total PnL = VFA(T,T,FA(0,T)) − VFA(0,T,FA(0,T))

= VFA(T,T,FA(0,T)) − 0

= e−r(T−T)[FA(T,T) − FA(0,T)]

= A(T) − FA(0,T)

which is simply the economic value of paying the contracted price
K = FA(0,T) instead of the actual price A(T) for the underlying asset.
In practice, many forward contracts stipulate financial settlement, i.e.,
payment of A(T) − K, rather than physical settlement, i.e., actual delivery
of the underlying asset for the contracted price K.

4.1.5 Forward Curve

Forward prices are not future prices, FA(t,T) ≠ A(T) when t < T, except by
chance. It is common to graph the FA(t,T) as a function of the forward
date T, see Figure 4.1, and think of this forward curve as the market forecast
for the future prices of the asset. While the forward curve might be a guide for
forecasting, its correct interpretation is the indifference curve for delivering
an asset spot t versus later dates T > t.
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Contango
FA(0, T)

A(0)

T

Backwardation

FIGURE 4.1 Contango versus backwardation.

If the slope of the forward curve is positive resulting in increasing for-
ward prices relative to spot, the forwards are called being in contango, which
is the usual case when one has to incur interest and other carrying costs
such as storage for the underlying asset with not enough offsetting interim
cash flows.

When the forward curve is inverted, the forwards are said to be in back-
wardation. This is usually the case for bonds where the earned yield is above
the financing cost, or for stocks whose dividend yield exceeds their financing
cost, resulting in a net benefit to the cash-and-carry holder.

EXAMPLE 1

The price of an asset on April 1st is $100, and we are interested in a
3-month forward (July 1st) contract to buy the asset. Assume that the
continuously compounded interest rate is deterministic and constant,
r = 3.9801%. We have A(0) = 100, r = 3.9801%,T = 0.25 and

FA(0,T) = 100e3.9801%∕4 = 101

(Continued)
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Assume the spot price on July 1st ends up 2 points above the March
1st forward value, A(T) = FA(0,T) + 2 = 103. Figure 4.2 and Table 4.1
show a possible evolution of the asset price and the associated forward
price and the value of a forward contract initiated on March 1st to the
buyer with K = 101.
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t

A(t) F(t,T) VF(t,T,K) [Right Axis]

FIGURE 4.2 3-month evolution of an asset’s spot and forward prices.

TABLE 4.1 3-month evolution of an asset and its forward price.

t A(t) T T − t FA(t,T) VFA(t,T,K)

April 1st $100 July 1st 0.25 $101 $0
May 1st $101 July 1st 2/12 $101.67 $0.67
June 1st $98 July 1st 1/12 $98.33 −$2.67
July 1st $103 July 1st 0 $103 $2

4.2 FUTURES CONTRACTS

Exchange-traded futures contracts are forward contracts with standardized
terms such as size and delivery date. For example, the popular E-mini S&P
500 futures contract traded on the Chicago Mercantile Exchange (CME)
is a cash-settled contract based on $50 times the S&P 500 index with a
quarterly delivery cycle on the 3rd Friday of each quarter (March, June,
September, December).
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As opposed to a forward contract, which is a fully customizable privately
negotiated bilateral agreement between two counterparties, the futures con-
tract provides liquidity and transparency (price, open interest, volume) with
the exchange serving as the central counterparty (CCP): once a trade is done,
the exchange becomes the seller to every buyer, and the buyer to every seller,
reducing the credit risk to the customers.

4.2.1 Futures versus Forwards

Futures contracts are similar to forward contracts in that there is no
exchange of funds when one buys or sells a futures contract: the futures
price is the price making the contract have zero value at transaction time.
However, as opposed to a forward contract whose delivery price remains
fixed and its value can continue to change and its cumulative profit and
loss, A(T) − FA(0,T), only paid at forward date T, the exchange requires
daily mark-to-market: paying/receiving the day’s gains or loss with no carry
forward of the daily PnL to the forward date.

The daily mark-to-market changes the delivery price to each day’s set-
tlement price making the future contract have zero value again. Daily mark
to market then is equivalent to liquidating one’s position, and entering into
a new zero-cost contract with a revised price. The PnL between two consec-
utive dates t1, t2 = t1 + 1 day can be calculated as

Daily PnL = VFA(t2,T,FA(t1,T)) − VFA(t1,T,FA(t1,T))

= VFA(t2,T,FA(t1,T)) − 0

= e−r(T−t2)[FA(t2,T) − FA(t1,T)] (4.2)

While Formula 4.2 is the true economic value of the daily PnL, futures con-
tracts by design ignore the discounting and only require payment of

[FA(t2,T) − FA(t1,T)]

resulting in the futures price being different from the forward price, with
the difference a function of the correlation of the ignored discounting and
forward price. Note that the sum of daily cash flows of the futures contract
equal the single cash flow of the forward contract

∑

i

[FA(ti+1,T) − FA(ti,T)] = FA(T,T) − FA(0,T)

= A(T) − FA(0,T)

the difference being the timing of the cash flows.
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For short-dated futures, the difference is usually small, and it can also be
shown that if interest rates are deterministic, the futures price and forward
price are the same: one can replicate one unit of a forward contract via a
futures contract by daily adjusting the size of the futures contract to e−r(T−t2)

at t1, thereby offsetting the ignored discounting [Cox et al., 1981]. In this
case, the economic value of cash flows—daily cash flows for the futures con-
tract versus one cash flow at the end for the forward contract—match, and
the futures price must equal the forward price to avoid arbitrage. Note that
since interest rates are assumed to be deterministic, the adjustment e−r(T−t2)

at t1 is known for all t1, t2, and does not depend on the evolution of under-
lying A(t) or the forwards, FA(t,T).

In the more realistic case that interest rates are non-deterministic, and
especially for long-dated futures contracts based on forward interest rates,
the difference can be significant and needs to be properly accounted for.

4.2.2 Zero-Cost, Leverage

While the initial value of a forward of futures contract with K = FA(0,T) is
zero, its risk is not, and one cannot run an arbitrarily large position (infinite
leverage). As spot prices move, the value of an existing contract changes and
the gaining counterparty runs the risk of the losing counterparty unable or
unwilling to pay, creating a credit risk.

For privately negotiated forward agreements between two counterpar-
ties, the counterparties can set a limit to the amount of this exposure and
might require a periodic deposit of funds from the losing counterparty to
the other.

For futures, the daily mark-to-market process does not allow the adverse
PnL and credit risk to grow, however the credit risk does remain intraday,
and the exchange requires posting of enough funds to withstand a poten-
tially adverse movement during the day. For example, each E-mini S&P
500 contract requires a deposit of $12,000 per contract, protecting against
240 = 12000∕50 point daily movement in the S&P 500 index. The amount
of the deposit per contract is known as the performance bond and is deter-
mined by the exchange and periodically updated in response to the changing
volatility of the underlying asset.

4.2.3 Mark-to-Market Loss

While the forward price will converge to the spot price at contract expiry,
and a properly constructed forward contract via a cash-and-carry calculation
should not experience any ultimate PnL, the underlying asset and the con-
tract can have large mark-to-market losses, requiring a large inflow of cash.
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If the losing counterparty cannot provide the requisite cash, the position
can be in default and get liquidated. When deciding to enter into a forward
contract with an advantageous entry point from a cash-and-carry perspec-
tive, the mark-to-market risk and the price volatility need to be carefully
analyzed and taken into consideration. For example, in the case shown in
Table 4.1, although the position ends up with a positive value of $2 per con-
tract, it might have already been force liquidated one month before when
the asset price was $98 and the contract was valued at −$2.67.

4.3 STOCK DIVIDENDS

When calculating forward stock prices, if there are any known dividends
between now and the forward date, the future value of these discrete div-
idends from the dividend dates to the forward date need to be subtracted
from the cash-and-carry forward price. Specifically if there are known divi-
dends D1, . . . ,Dn at T1, . . . ,Tn where t < T1 < . . . < Tn < T

FA(t,T) = A(0)er(T−t) −
∑

i

Die
r(T−ti)

Instead of using the above formula, it is common practice to assume a contin-
uously compounded dividend yield of q and that the dividends are reinvested
in the asset, so that each unit of stock grows in quantity to eqt over a time
period of length t. In this case, the cash-and-carry argument implies that to
deliver 1 unit of the stock at the agreed upon price and to avoid arbitrage,
the seller must borrow enough to buy e−q(T−t) units of the stock trading at
A(0) to get

[e−q(T−t)A(0)]er(T−t) = A(0)e(r−q)(T−t) = FA(t,T)

where the left-hand side is the amount owed at T and the right-hand side is
the amount the seller receives.

4.4 FORWARD FOREIGN CURRENCY EXCHANGE RATE

Given two currencies, domestic and foreign, we can compute the forward
exchange rate by considering the carrying cost of each currency. For
example, let the 3-month simple interest rates be rd, rf , and let today’s
foreign currency exchange (FX) rate be X(0): 1 unit of domestic currency
buys X(0) units of foreign currency.
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The forward FX rate, FX(0,3m), that can be locked in today is calculated
based on the following no-arbitrage argument known as covered interest
parity: a unit domestic currency can be invested at rd for three months to
be worth 1 + rd∕4 and converted at the agreed upon forward exchange rate,
FX(0,3m). Alternatively, it can be converted today to X(0) units of foreign
currency and invested at rf for three months to end up with X(0)(1 + rf∕4)
units of foreign currency. Lack of arbitrage requires these future amounts to
be the same.

1 × (1 + rd∕4) × FX(0,3m) = X(0) × (1 + rf∕4)

⇒ FX(0,3m) = X(0)
1 + rf∕4

1 + rd∕4
(4.3)

In general, the forward exchange rate can be calculated with the formula

1
Dd(t,T)

× FX(t,T) = X(t) × 1
DFf (t,T)

where DFd,f (t,T) is domestic/foreign discount factors at time t for future
date T.

EXAMPLE 2

Let the Canada versus U.S. exchange rate be 1.25, that is 1 USD buys
1.25 CAD, and let the 3-month USD and CAD simple interest rates be
3% and 2%, respectively. The 3-month forward CAD/USD exchange
rate is

1.25 ×
1 + 2%∕4
1 + 3%∕4

= 1.2469

which is 31 pips (units of 0.0001) lower than spot. Note that the for-
ward FX rate is not the future spot FX rate: FX(0,3m) ≠ X(3m).

A persistent interest rate differential between two currencies together
with a stable FX rate can lead to a profitable FX carry trade where one
borrows in the currency with the low rate and invests in the currency with
the high rate. As long as the FX rates remain steady, one can close out the
trade, convert the profits into the low rate currency, and initiate a new trade.



Trim Size: 6in x 9in Sadr838401 c04.tex V1 - 03/18/2022 3:34pm Page 119�

� �

�

Forwards and Futures 119

This is akin to selling the high yielding currency forward and betting against
the forward, i.e., betting that the future FX rates will be lower than the
forward and that the forward will not be realized. The FX carry trade can
last for a while, especially if the currencies are pegged by the government,
but usually ends in tears for traders and the pegging countries when the peg
is no longer sustainable leading to drastic devaluation and weakening (drop)
of the high-yielding currency.

4.5 FORWARD INTEREST RATES

The cash-and-carry argument allows one to calculate the rate for a forward
starting loan. For example, assume that a corporate treasurer expects to
receive funds in six months and wants to lock in the 3-month interest rate
that can be earned on those funds. Let the 6-month and 9-month simple
interest rates be given as r6m, r9m. To calculate the implied simple (add-on)
forward rate, F = f ([6m,9m]), referred to as 3-month rate, 6-months for-
ward, lack of arbitrage requires

(1 + r6m∕2) × (1 + F∕4) = (1 + r9m × 9∕12)

Therefore

F =
( (1 + r9m × 9∕12)

(1 + r6m∕2)
− 1

)

∕(1∕4)

Note that today’s locked-in interest rate for a forward deposit is not the
future 3-month interest rate.

In general, if we have a discount factor curve, D(T), we can calculate
simple (add-on) forward rates as

f ([T1,T2]) =
(

FV(T2)
FV(T1)

− 1
)

∕(T2 − T1)

=
(

D(T1)
D(T2)

− 1
)

∕(T2 − T1)

Similarly, the continuously compounded forward interest rates can be calcu-
lated as

FV(T2) = FV(T1)efc([T1,T2])(T2−T1)

⇒ fc([T1,T2]) = − 1
T2 − T1

ln
(

D(T2)
D(T1)

)

(4.4)
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which in the limit as T2 → T1 leads to the instantaneous forward inter-
est rates

f (T) = − 𝜕

𝜕T
ln D(T) (4.5)

D(T) = e− ∫ T
0 f (u)du

EXAMPLE 3

Let the 3-month and 6-month simple interest rates be quoted as 2%
p.a. and 2.50% p.a., respectively. The 3-month rate, 3-months forward
is the simple forward interest rate over [3m,6m]

f ([3m,6m]) = (
1 + 2.5%∕2
1 + 2%∕4

− 1)∕(0.5 − 0.25) = 2.9851%

Note that forward interest rates can be thought of as the rate of growth
of money during the forward deposit/loan period. In the example, money
grows at the rate of 2% for three months, and at the rate of 2.5% for six
months. The growth rate of money between three and six months to make
these two rates consistent should be about 3%.
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EXERCISES

1. Let T0 = 0,T1,T2, . . . denote dates where Tn is n days from today (T0).
An asset’s price is $1,000 today, A(T0) = 1000, and the continuously com-
pounded interest rate is constant, r = 4% with fractions of time calculated
Act/365: Ti+1 − Ti = 1∕365.
(a) What is the 10-day forward price of the asset, FA(0,T10)?
(b) You agree today (T0 = 0) to buy the asset in 10 days for

K = FA(0,T10). How much do you need to pay/receive today to
enter into this contract?



Trim Size: 6in x 9in Sadr838401 c04.tex V1 - 03/18/2022 3:34pm Page 121�

� �

�

Forwards and Futures 121

(c) Assume the asset’s price increases by $10 each day for the next
10 days, A(Tn) = A(0) + 10n, and compute the missing entries in the
following table where CFFut is the cash flow for one futures contract,
CFFwd is the cash flow for one forward contract, QFut is the number
of futures contracts needed to replicate one forward contract, and
FVFut = FV(Q × CF) is the corresponding cash flow of the modified
futures contract, future valued to T10.

n A(Tn) FA(Tn,T10) VFA(Tn,T10,K) CFFwd CFFut QFut FVFut

0 1,000 0 0 0.999014 0
1 1,010 9.8904 0 9.900165 0.999124 9.900165

. . .
10 1,100 1,100 98.9035

(d) Compare the total cash flows of one (unmodified) futures contract
versus the forward contract.

(e) Would QFut be different if the underlying had instead dropped by
$10 each day to settle at $900 at T10?

2. Given a discount curve, D(T), one can extract continuously compounded
zero-coupon rates for any date via

D(T) = e−T×Z(T) ⇔ Z(T) = − 1
T

ln D(T)

when interest rates are constant, Z(T) = r for a constant r. The graph of
Z(T) versus T is known as the zero-coupon curve.
(a) Given two dates 0 < T1 < T2, let fc([T1,T2]) be the continuously com-

pounded forward interest rate that can be locked in today (t = 0)
for the forward deposit period [T1,T2]. Provide an expression for
fc([T1,T2]) in terms of Z(T1),Z(T2).

(b) Calculate the “1-year forward rate, 2 years forward,” fc([2,3]), for
three cases:
i. Z(2) = 4%,Z(3) = 5%

ii. Z(2) = 4%,Z(3) = 4%
iii. Z(2) = 4%,Z(3) = 3%
Explain the resulting forward rates in each case.

3. Using the same no-arbitrage argument to derive Formula 4.3
(a) Provide an expression for the forward exchange rate, FX(0,T), for any

T using simple (add-on) domestic and foreign interest rates, rd, rf .
(b) Using the Taylor Series approximation (1 + x)𝛼 ≈ 1 + 𝛼x and ignoring

terms of T2 and higher, which is justified for small T, say T < 0.5,
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provide an approximate formula for the forward exchange rate in
terms of spot exchange rate, X(0), and simple (add-on) interest rate
differential rf − rd.

(c) Derive an expression for FX(0,T) using continuously compounded
rd, rf , and use the Taylor Series approximation ex ≈ 1 + x and ignoring
terms of T2 and higher, provide an approximate formula for FX(0,T)
in terms of X(0) and rf − rd.

4. A 2-year bond with a semiannual coupon rate of 4% per annum is trading
at par (100%).
(a) What is its spot semiannual yield?
(b) Assume one can borrow at 3% p.a. simple interest rate for three

months (0.25 years) to purchase this bond on a leveraged basis. What
is the forward price for a 3-month forward delivery?

(c) Use the 3-month forward price to calculate its forward yield, i.e., its
semiannual yield on the forward date based on the above forward
price. Note that in three months, the bond will be in the middle of the
coupon period with 21 months left to maturity. Use Formula 2.5 with
w = 0.5.

(d) A positive carry trade is one where the yield is higher than the financ-
ing cost. For bonds, a positive carry trade leads to a positive yield
carry defined as the difference between the forward yield and the spot
yield. Is purchase of this bond a positive carry trade?

(e) Recalculate the forward yield if the 3-month borrowing rate is 5%. Is
the yield carry positive?

5. The n-year inflation rate, In, is the growth rate in the price of a basket of
goods. In the United States, the Consumer Price Index (CPI) serves as the
price index and is related to the inflation rate as

CPI(n year) = CPI(0) × (1 + In)n

An often-used metric for inflation expectation is the 5-year, 5-year for-
ward inflation rate, I5,5 backed out of market levels for I5, I10.
(a) By relating them to the annually compounding growth rate of CPI,

provide a formula for I5,5 in terms of I5, I10.
(b) Compute the 5 year-5 year forward inflation rate when I5 = 2%,

I10 = 3%.
6. A stock trading at $100 per share can be financed at the continuously

compounded interest rate of 5% per annum.
(a) What is the 1-year forward price of the stock if it pays quarterly div-

idend of $1 per quarter?
(b) What is the 1-year forward price if its dividend yield is 4% per

annum?
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(c) If the dividend yield is 4% per annum, is the forward curve in back-
wardation or contango?

7. Assume that the spot JPY/USD exchange rate is 120 Yen per 1 USD, and
that the continuously compounded interest rate in the United States and
Japan are 1% and 2%, respectively.
(a) What is the 3-month forward JPY/USD exchange rate?
(b) What is the 3-month forward USD/JPY exchange rate?

8. Let the noncompounding (simple) 3-month and 6-month interest rates be
2% and 3%, respectively.
(a) What is the [3m,6m] noncompounding forward rate?
(b) What is the [3m,6m] continuously compounding forward rate?

9. If the continuously compounded interest rate is a constant r, what is the
instantaneous forward interest rate (see Formula 4.5)?
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CHAPTER 5
Risk-Neutral Valuation

While forward contracts separate the agreement date and the forward
transaction date, they require both counterparties to abide by the terms

of the forward contract, regardless of any profit or loss consideration. For
example, the buyer in a forward contract has to buy the asset for the pre-
viously agreed upon price, even if the market price of the asset is below the
contract price. An option contract, on the other hand, provides the right,
but not the obligation, to transact an asset at some future date for prede-
termined terms. While the cash-and-carry argument allowed us to price a
variety of forward contracts, the pricing of options requires more advanced
techniques, and their pricing falls under the modern pricing paradigm of
risk-neutral valuation.

5.1 CONTINGENT CLAIMS

Option contracts are examples of contingent claims that allow the owner to
transact at the option owner’s sole discretion. We will focus on the economic
value of the contract at transaction time and assume that an option owner
will transact if and only if the economic value of the underlying transaction
is positive.

The prime example of an option is a European-style exercise option,
which has a specified payoff at a specific exercise/expiration date T in the
future. For example, a European-style call option, C(T), with strike K on an
asset A(T) gives the owner the right—but not the obligation as opposed to
a forward contract—to buy the asset for K at expiry T. At expiration, if the
asset price is below the strike K, the option owner can buy the asset in the
market for a lower price than K, and, hence, will not exercise the option and
let it expire worthless. If the asset price is above K, then the option owner
can buy the asset for K and sell it immediately in the market for A(T) for a
profit of A(T) − K. The economic value of the option payoff is then

C(T) = max(0, A(T) − K)

125
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FIGURE 5.1 Economic value of European-style call and put options at expiration with
strike K = 100.

Similarly, a put option with strike K allows the owner to sell the asset at K at
expiry and its economic value at expiration is P(T) = max(0,K − A(T)) (see
Figure 5.1).

While the value of the contingent claim is known at expiration, the goal
of contingent-claim pricing is to determine its value prior to expiry. We will
call the economic value of the option at expiry the option payoff, and focus
on evaluating today’s value of this future option payoff.
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In 1973, the celebrated Black-Scholes-Merton (BSM) formula was
derived to price European-style call and put options [Black and Scholes,
1973]. While BSM methodology used advanced mathematical techniques
to derive the formula, it was shown later by Cox-Ross-Rubinstein (CRR)
[Cox et al., 1979] that the same formula can be obtained and understood
using much simpler techniques. This new methodology goes under the name
of risk-neutral valuation and is the modern framework for contingent claim
valuation. Its basic result is that any contingent claim’s value is its expected
discounted value of its cash flows in a risk-neutral world [Harrison and
Kreps, 1979; Harrison and Pliska, 1981].

5.2 BINOMIAL MODEL

Given today’s t = 0 price of an underlying asset A0 = A(0), consider a
European-style contingent claim C(t) with expiration T > 0. Assume that
the underlying asset has no cash flows over the period [0,T], and let us
consider the simplest case where the underlying asset at expiration can only
take on two values Au, Ad, as shown in Figure 5.2. Let Cu and Cd denote
the corresponding then-known values of the contingent claim in each state
at expiration.

A0, r

t0 = 0 t1 = T

Au

Cu

Ad

Cd

C0 = ?

FIGURE 5.2 One-step binomial model.
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Our goal is to construct a replicating portfolio today so that the portfo-
lio value at expiration (T) replicates the value of the contingent claim. The
fair price of the option today, C0, would be today’s value of this replicating
portfolio.

Our portfolio consists of taking a position in the asset, Q0 units of it,
with positive Q0 meaning buy and negative Q0 meaning short, and entering
into a loan or deposit at the prevalent continuously compounded risk-free
rate r until T. If L0 < 0, we are borrowing money and if L0 > 0 we are
lending. In either case, the value of the loan or deposit at expiration would
be L0erT regardless of the state of the world.

At T, if we are in Au state of the world, we want this portfolio to be
worth Cu

Q0 × Au + L0erT = Cu

Similarly, if we are in Ad state of the world, we want the portfolio to be
worth Cd

Q0 × Ad + L0erT = Cd

We have two equations and two unknowns, Q0,L0. Solving for these,
we get

Q0 =
Cu − Cd

Au − Ad
, (5.1)

L0 = e−rT
(

Cu −
Cu − Cd

Au − Ad
Au

)

(5.2)

Today’s value of the contingent claim is

C0 = Q0 × A0 + L0

=
Cu − Cd

Au − Ad
A0 + e−rT

(

Cu −
Cu − Cd

Au − Ad
Au

)

= e−rT

[
A0erT − Ad

Au − Ad
Cu +

(

1 −
A0erT − Ad

Au − Ad

)

Cd

]
(5.3)

The seller of the option can charge C0, borrow or lend L0 at interest
rate of r, and use the proceeds to have Q0 units of the asset priced at A0. At
expiration, in either state of the world, Au or Ad, the value of her holdings
(Q0 units of the asset) exactly offsets her liabilities: loan or deposit amount
plus interest, L0erT , and payment of the economic value of the option (Cu
or Cd) to the option owner.
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EXAMPLE 1

Let today’s price of a stock be A0 = $100, the 6-month continuously
compounded interest rate r = 4%, and assume that 6 months from
today, the stock price can go up to Au = $105 or go down to Ad = $95.
For a 6-month expiration (T = 0.5) call option with strike K = $100,
we have

Cu = max(0,Au − 100) = 5

Cd = max(0,Ad − 100) = 0

The replicating portfolio is computed as

Q0 = 5 − 0
105 − 95

= 50%

L0 = e−0.04∕2(5 − (50%)(105)) = −46.56

and today’s price of the call option is

C0 = (50%)(100) + (−46.56) = 3.44

The economic value of the call at expiration can replicated as follows:
starting with $3.44 as the option premium, one can borrow $46.56
for 6 months at 4% to end up with $50 today, and use this to buy
50% of the stock trading at $100 per share. At expiration, the loan
principal and interest are $46.56e0.04∕2 = $47.50. In the Au state, one
owns 50% of a stock trading at $105 per share, and owes $47.50 for
the loan, resulting in net value of $5, which is exactly the economic
value of the option Cu = 5.

(50%)(105) − 47.50 = 5

Similarly, in the Ad state, one owns 50% of a stock trading at $95 and
owes $47.50 for the loan, resulting in the net value of 0, exactly the
economic value of the option Cd = 0

(50%)(95) − 47.50 = 0
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In Example 1, we are assuming fractional (50%) shares for exposition. For
a more realistic example, assume that the call option allows one to buy 100
shares of the stock at the price K = $100 per share. To replicate this option,
one needs to buy 50 shares of the asset today at the price of $100 per share.

The replication argument allows the buyer and the seller of the option
to agree on the arbitrage-free price of the option. The option buyer knows
that by spending $3.44 per option, she can replicate the economic value
of the option at expiration, and paying any amount less than $3.44 will
result in a sure profit. In a competitive market with participants in search of
sure profits, they will bid up the price of the option to the theoretical value
until there are no sure profits left. Similarly, the option seller knows that by
receiving $3.44 per option, she can own and, hence, deliver the economic
value of the option at expiration, so any amount higher than that is a sure
profit. In a competitive market, other participants will offer the option lower
and lower until there are no sure profits left.

5.2.1 Probability-Free Pricing

Note that in the above setup, we did not have to consider the probability of
either state happening: as long as Au,Ad can happen and are the only two
possibilities, we are golden!

However, there are restrictions on the assumed future states. A bit of
algebra allows us to rewrite the formula for C0 as an expected value

C0 = e−rT[puCu + (1 − pu)Cd] (5.4)

where

pu =
A0erT − Ad

Au − Ad
(5.5)

and we recognize the A0erT term as the forward price FA(0,T) (see
Figure 5.3).

5.2.2 No Arbitrage

Lack of arbitrage is equivalent to pu being a probability

0 ≤ pu ≤ 1.

which is equivalent to the following restriction on assumed states

Ad ≤ FA(0,T) ≤ Au
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FA(0, T)

FA(0, T) – Ad

Au – Ad
pu =

A0, r

t0 = 0 t1 = T

Ad

Au

FIGURE 5.3 Lack of arbitrage.

To see this, consider the case pu > 1, which means that the forward is
higher than either state in the future: FA(0,T) > Au > Ad. In this case, we
can sell the asset forward for FA(0,T), and deliver it at T by buying it at
either Au or Ad. Regardless, we have made money with no risk.

Similarly, if pu < 0, then FA(0,T) < Ad < Au, and we can ensure a
risk-less profit by buying the asset forward for FA(0,T), and selling it higher
at expiration for Au or Ad.

Therefore, if there is no arbitrage in the above simple economy, pu can
be considered as a probability, and today’s value of the option is simply the
expected discounted value of the option payoff under this probability per
Formula 5.4.

5.2.3 Risk-Neutrality

We obtained C0 by constructing a portfolio that replicates the option payoff
regardless of the probability of each state. We then showed that we can get
the same value by taking the expected value under a probability pu. Other
than a mathematical identity—pu is the probability that gets you the correct
option value, as long as you know the option value—is there another way
of interpreting pu? The answer is in the affirmative: pu is the probability
that a risk-neutral investor would apply to the above setting. Consider two
alternatives:

1. Invest A0 at the risk-free rate r, and receive A0erT at T.
2. Buy an asset at A0 and either get Au or Ad at T.
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For a risk-neutral investor, these two investments would be equivalent if

E[A(T)] = puAu + (1 − pu)Ad = A0erT (5.6)

pu =
A0erT − Ad

Au − Ad
(5.7)

which is identical to the expression in Formula 5.5. Therefore, rather than
setting up a replicating portfolio and computing its value today, we can sim-
ply take the expected discounted value of the option payoff using risk-neutral
probabilities. Notice that Formula 5.6 can be rewritten as

A(0) = e−rT[puAu + (1 − pu)Ad]

= E[e−rTA(T)] (5.8)

relating the risk-neutral probabilities directly to the assumed evolution of
the asset. We can also rewrite Formula 5.4 as

C(0) = E[e−rTC(T)] (5.9)

with both of the above expectations using risk-neutral probabilities.

5.3 FROM ONE TIME-STEP TO TWO

The two-state setup is obviously too simplistic. Assets can take a variety of
values at expiration. However, using the above setup as a building block, we
can arrive at more complex cases. The idea is to subdivide the time from now
until expiration into multiple intervals, and for each state in each interval,
generate two new arbitrage-free (bracketing the forward) future states. With
enough sub-divisions, we can arrive at a richer and more real-life terminal
distribution for the asset.

Consider a two time-step extension of the 1-step binomial model shown
in Figure 5.4. For each intermediate node Au,Ad at t1, we can use the 1-step
binomial model’s Formulas, 5.8, and 5.9, to arrive at the risk-neutral prob-
abilities that would provide the same values for Cu,Cd as the replicating
portfolios (Qu,Lu), (Qd,Ld). Having computed Cu,Cd, we can then use
the 1-step binomial model again to compute the risk-neutral probabilities
that would provide the same value as the replicating portfolio (Q0,L0) to
compute C0.
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Auu

puu

Au, r
Cu = QuAu + Lu

A0, r
C0 = Q0A0 + L0

Ad, r
Cd = QdAd + Ld

pu

pdu

Cuu

Aud
Cud

Adu
Cdu

Add
Cdd

T0 = 0 T1 T2 = T

FIGURE 5.4 Two-step binomial model.

EXAMPLE 2

Continuing with Example 1, let us subdivide the time to expiration,
T = 6m, into two 3-month intervals, and assume the stock’s price
evolves as shown in Figure 5.5. The replicating portfolio composition
and the intermediate values of the option in Au,Ad are shown. Note
that the replicating portfolio initially consists of Q0 = 62.44% of the
stock funded in part by a 3-month loan of L0 = 59.35. Depending
on whether we end up in Au or Ad in 3 months, the quantity and
the loan size need to be dynamically adjusted. In the Au state, the
required replicating portfolio is (Qu,Lu) = (87.5%,−85.76): one needs
to borrow more to buy more of the stock. In the Ad state, the replicat-
ing portfolio is (Qd,Ld) = (12.5%,−11.51): one needs to reduce the
position in the stock by selling it and using the proceeds to reduce the
loan size.

(Continued)
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Auu = 107
Cuu = 7

Aud = 99
Cud = 0

Adu = 101
Cdu = 1pdu = 62.2%

puu = 62.9%

pu = 66.8%

A0 = 100, r = 4%
(Q0, L0) = (62.44%, –59.35)
Cu = 3.09

Au = 103
(Qu, Lu) = (87.5%, –85.76)
Cu = 4.36

Ad = 97
(Qd, Ld) = (12.5%, –11.51)
Cd = 0.62

Add = 193
Cdd = 0

T0 = 0 T1 = 0.25
3m, Δt = 0.25 3m, Δt = 0.25

T2 = T = 0.5

FIGURE 5.5 Two-period evolution of the replicating portfolio for a call
option.

5.3.1 Self-Financing, Dynamic Hedging

As we subdivide the time to expiration into finer partitions, for the repli-
cation argument to hold, we have to ensure that the original portfolio is
sufficient. We can change the composition of the portfolio, but cannot add
new assets or unknown cash amounts. Therefore, at each interim state we
can change the amount of the asset we hold by securing requisite funds at
the prevailing financing rates. As we do this dynamic rebalancing (changing
Qs), the value of the portfolio entering into each state must equal the value
of the portfolio leaving the state, that is, the replicating portfolio should be
self-financing.

Consider the up state Au. As we enter it, we hold a portfolio that consists
of Q0 units of the asset now worth Au, and a loan of size L0 plus its interest
worth L0ert1 . Therefore, the value of the portfolio value is

Cu = Q0Au + L0ert1

On the other hand, Cu = QuAu + Lu, since (Qu,Lu) is the required portfolio
to replicate the option payoffs (Cuu,Cud) at the next time step t2. Therefore,
we need to change our holding of the asset from Q0 to Qu only by changing
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the size of our loan from L0ert1 to Lu, that is, the change in the underlying
holding should only be financed by changing the loan size

(Qu − Q0)Au = −(Lu − L0ert1 )

ensuring that the portfolio is self-financing. Similarly, in the down state Ad,
we have

(Qd − Q0)Ad = −(Ld − L0ert1 )

EXAMPLE 2 (Continued )

Continuing with Example 2, note that the value of the portfolio coming
into Au state is

(62.44%)(103) + (−59.35)e0.04∕4 = 4.36

which is equal to the value of the portfolio after rebalancing

(87.5%)(103) + (−85.76) = 4.36

Similarly, in the Ad state, the replicating portfolio is worth 0.62 before
and after rebalancing:

(62.44%)(97) + (−59.35)e0.04∕4 = (12.5%)(97) + (−11.51) = 0.62

5.3.2 Iterated Expectation

For the two time-step model, at node Au, the risk-neutral probability puu
must satisfy

Auer(T−t1) = [puuAuu + (1 − puu)Aud]

⇒ Au = Et1
[e−r(T−t1)A(T)|A(t1) = Au]

⇒ puu =
Auer(T−t1) − Aud

Auu − Aud
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Having found puu, we can compute Cu

Cu = e−r(T−t1)[puuCuu + (1 − puu)Cud]

= Et1
[e−r(T−t1)C(T)|A(t1) = Au]

Similarly, at node Ad, the risk-neutral probability pdu must satisfy

Ad = Et1
[e−r(T−t1)A(T)|A(t1) = Ad]

⇒ pdu =
Ader(T−t1) − Add

Adu − Add

to compute Cd
Cd = Et1

[e−r(T−t1)C(T)|A(t1) = Ad]

The above formulas can be compactly written as conditional expectations
conditioned on all information about an underlying asset up to t1

A(t1) = Et1
[e−r(T−t1)A(T)|A(t1)]

C(t1) = Et1
[e−r(T−t1)C(T)|A(t1)]

(5.10)

where both A(t1),C(t1) are random variables.
Having obtained Cu,Cd, we can compute the risk-neutral probability pu

via

A0er(t1−t0) = [puAu + (1 − pu)Ad]

⇒ pu =
A0er(t2−t1) − Ad

Au − Ad

to get

A0 = E0[e−r(t1−t0)A(t1)]

= E0[e−r(t1−t0)Et1
[e−r(T−t1)A(T)|A(t1)]]

= E0[e−rTA(T)] (5.11)

and to compute C0

C0 = E0[e−r(t1−t0)C(t1)]

= E0[e−r(t1−t0)Et1
[e−r(T−t1)C(T)|A(t1)]]

= E0[e−rTC(T)] (5.12)
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where we have used the law of iterated expectation: For any pair of random
variables X,Y

E[X] = E[E[X|Y]]

where the outer expectation is taken relative to all possible outcomes of Y,
see Appendix A.2.3. Combining Formulas 5.11 and 5.12, we have

A0 = E0[e−rTA(T)]

C0 = E0[e−rTC(T)]
(5.13)

where the top equations in Formulas 5.10 and 5.13 characterize the
risk-neutral probabilities solely based on the assumed evolution of the
underlying asset, while the bottom equations provide the valuation for any
contingent claim.

5.4 RELATIVE PRICES

Formulas 5.10 and 5.13 can be generalized to (0 ≤ t ≤ T)

A(t) = Et[e−r(T−t)A(T)|A(t)]

C(t) = Et[e−r(T−t)C(T)|A(t)]
(5.14)

which can be written as

A(t)
ert

= Et

[
A(T)
erT

|
|
|
|
A(t

]

C(t)
ert

= Et

[
C(T)
erT

|
|
|
|
A(t)

] (5.15)

Let M(t) be the value of unit investment at a risk-free rate, that is M(t) equals
the value of a money market account started with unit currency and contin-
uously reinvested at the risk-free rate. M(0) = 1 and M(t) = ert. We have

A(t)
M(t)

= Et

[
A(T)
M(T)

|
|
|
|
A(t)

]

C(t)
M(t)

= Et

[
C(T)
M(T)

|
|
|
|
A(t)

] (5.16)
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The first formula in 5.16 pins down the asset evolution in a risk-neutral
setting, while the second is the valuation formula for contingent claims. Note
that we can always form a contingent claim whose payoff equals the value of
the underlying, C(t) = A(t), therefore, the second formula already includes
the first one and we can simply write

(0 ≤ t ≤ T) C(t)
M(t

= Et

[
C(T)
M(T)

|
|
|
|
A(t)

]

(5.17)

Probing Formula 5.17 further, it states that under risk-neutral probabil-
ities, relative prices for the asset and contingent claims on it relative to the
money market account, X(t) = C(t)∕M(t), form a martingale: at any time
t ≥ 0, the conditional expected future (T) value is the t-value

(0 ≤ t ≤ T) Et[X(T)] = X(t)

or said differently, the conditional expected change between any two times
is zero

(0 ≤ t ≤ T) Et[X(T) − X(t)] = 0

A prime example of a martingale is the symmetric random walk (see
Figure 5.6). At each time-step, the expected value of the change is zero

E[X(tn+1) − X(tn)] = 1∕2 × (Δx) + 1∕2 × (Δx)

Furthermore, no matter where we are in the future, say point A or B after
four time-steps, the expected value of the change from then on is still zero.
This is a characterization of one’s stake with payoff of ±1 based on the
outcome of a fair (p = 1∕2) coin. The expected amount of win or loss at
each toss is 0 and the expected value of one’s stake after any n tosses is
the initial stake. The same holds for the future: if after m tosses we are at
some level A, the expected value of the stake after another n tosses is still
the same level A.

5.4.1 Risk-Neutral Valuation

We now have all the components of risk-neutral valuation:

1. Posit a random process for the evolution of the underlying assets.
2. Adjust the process to ensure risk-neutrality, equivalent to relative prices

being martingales.
3. The price of any contingent claim is the risk-neutral expected discounted

price of its cash flows.
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…

…

…

p = 1/2

A

B

Δt

+Δx

–Δx

FIGURE 5.6 A symmetric random walk is a martingale.

Note that ensuring risk-neutrality is a condition on expectations that
are composed of products of assumed states and their respective proba-
bilities. This allows one to either fix the states and adjust the probabili-
ties, or alternatively one can fix the probabilities and solve for the states.
As long as expected relative prices satisfy Formula 5.17, we can use this
probability-adjusted or state-adjusted evolution to price contingent claims.

The risk-neutral framework applies to non-constant and random inter-
est rates. In this case, the money market account’s value becomes

M(t, 𝜔) = e∫

t

0
r(u, 𝜔)du
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where 𝜔 denotes the randomness of future interest rates. This allows the
risk-neutral valuation framework to encompass interest rate derivatives (see
Section 7.4.1).

5.4.2 Fundamental Theorems of Asset Pricing

The generalization of the above multi-step model to an arbitrary number
of assets and contingent claims based on them gives rise to the following
Fundamental Theorems of Asset Pricing:

1. For a given multi-asset economy, lack of arbitrage is equivalent to the
existence of probability distributions, which would make relative prices
martingales. Each such probability distribution is called a risk-neutral
measure.

2. A complete market is where every contingent claim can be replicated
via a self-financing trading strategy. A market is complete if and only if
there exists a unique risk-neutral measure.

The first condition is a generalization of the result that to preclude arbi-
trage, forward prices should be bracketed by assumed future states.

The second condition is the generalization of our ability to solve the
replication equations, i.e., two equations and two unknowns. Had we
assumed that starting from two assets—a bank loan and an asset—the
number of future states in the next time-step could be different than two, we
would have had a different number of equations than unknowns, leading to
generally either no solution or many solutions and, hence, a range of values
for the contingent claim. In this case, the market would not be complete and
contingent claims would not have a unique replicating portfolio or price.
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EXERCISES

1. Assume the risk-free continuously compounded interest rate is 4% per
annum. For an asset with today’s price A(0) = $100, you are told that
its expected return is 10% per annum and that the asset in one year’s time
can be ($100,$120) with probabilities (50%,50%). What is the expected
value of the asset in one year in a risk-neutral setting?

2. For each step of the risk-neutral binomial model, what is the expected
continuously compounded yield

1
ti+1 − ti

Eti

[

ln
(

A(ti+1)
A(ti)

)]

3. Let r be the risk-free continuously compounded rate and A(0) today’s
value of an asset. For a given horizon T, assume the asset can take on
two values Au,Ad with risk-neutral probabilities of (1∕2, 1∕2). Provide
an expression for Au,Ad if Var(A(T)) = 𝜎2T for a given volatility param-
eter 𝜎.

4. In a 1-step binomial model, compute the risk-neutral probabilities for
some ΔA when
(a) Au,d = A0 ± ΔA
(b) Au,d = FA(0,T) ± ΔA

5. In the 1-step binomial model shown in Figure 5.2, consider the portfolio
consisting of one long position in the contingent claim and short

Q0 = (Cu − Cd)∕(Au − Ad)

of the asset, P = C − Q0A.
(a) Show that the portfolio has the same value at t1 = T regardless of

the terminal state Au,Ad, that is P(t1) = P1 for a constant P1 and the
portfolio is risk-less.

(b) Using an arbitrage argument, show that today’s value of the portfolio
should be its discounted future value

P0 = C0 − Q0A0 = e−rTP1

and compute C0.
(c) Show that the computed value of C0 above is the same as

Formula 5.3.
6. Using the same numerical values as in the 2-period binomial model in

Example 2
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(a) Calculate today’s price, P0, of a 6-month European put option with
strike K = $100.

(b) Calculate today’s value of a 6-month forward contract with purchase
price K = $100.

(c) Verify that C0 − P0 = VFA(0,T,K).
7. Replication via Forward Contracts. In the 1-step binomial model, repli-

cate the option payoff at expiration via Q0 amount of a forward contract
with delivery price of K0.
(a) Solve for Q0,K0

Q0(Au − K0) = Cu, Q0(Ad − K0) = Cd

(b) Compute today’s value of the above replicating forward contract:
Q0 × VFA(0,T,K0).

(c) Is C0 = Q0 × VFA(0,T,K0) the same as Formula 5.3?
8. Given two independent random variables X1,X2

(a) Provide an expression for E[X1 + X2|X1].
(b) Evaluate the above when E[X1] = E[X2] = 0.

9. Let X1,X2, . . . be independent and identically distributed random vari-
ables with E[Xi] = 0, and let

Sn =
n∑

i=1

Xi

Show that S1, S2, . . . form a martingale

E[Sn+1|S1, S2, . . . , Sn] = Sn

10. For the random walk shown in Figure 5.6
(a) What is the expected movement during each period?
(b) What is the standard deviation of the movement during each period?
(c) What is the expected movement over n time periods

E[X(ti+n) − X(ti)]

(d) What is the standard deviation of the movement over n time periods

√
Var(X(ti+n) − X(ti))
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CHAPTER 6
Option Pricing

The risk-neutral valuation framework of Chapter 5 provides the
mechanism for pricing any contingent claims. The celebrated Black-

Scholes-Merton option pricing formula can be derived by following the
steps of risk-neutral valuation: positing that an asset’s returns follows
the limiting form of a random walk, ensuring risk-neutrality by equating
forward prices and expected prices, and computing the expected discounted
value of the option payoff.

6.1 RANDOM WALK AND BROWNIAN MOTION

A symmetric random walk and its continuous time limit, a Brownian
Motion, are typically used to model the evolution of the underlying asset
or more typically the return of the underlying asset, leading to lognormal
dynamics for the underlying asset.

6.1.1 Random Walk

A symmetric random walk is an example of a discrete time random process:
a collection of random variables X(t) indexed by time. Different realizations
of the random variables as functions of time are called sample paths and
denoted by the generic symbol 𝜔, X(t, 𝜔). We will generally suppress the
second argument unless necessary.

The symmetric random walk starts at the origin, and at each time-step
Δt increases or decreases by Δx with equal probability p = 1∕2. At each
time-step, the expected change is zero, and, hence, the expected movement
during any time period is zero, i.e., a symmetric random walk is a martingale
as shown in Figure 5.6. While the expected value of the change is zero, its
variance increases over time.

Random walk is a Markov process: for any given future time t, the con-
ditional probabilities of the process after t only depend on its position at

143
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time t and are impervious to the process history before t. Specifically, a dis-
crete time process, {X(ti)}i≥0, is Markov if for any function f

(0 ≤ n < m) E[f (X(tm))|X(t0),X(t1), . . . ,X(tn)] = E[f (X(tm))|X(tn)]

6.1.2 Brownian Motion

A diffusion is a continuous time Markov random process with continuous
sample paths (Karlin and Taylor, 1981). For the random walk, if we let
the time interval and step size go to zero, while maintaining Δx = 𝜎

√
Δt

for some diffusion coefficient 𝜎 > 0, we arrive at a diffusion process called
Brownian motion, B(t), where B(t) has a normal distribution with mean
0 and variance 𝜎2t, B(t) ∼ N(0, 𝜎2t). When 𝜎 = 1, the Brownian motion is
called a standard Brownian motion.

To see the convergence to a normal distribution, we subdivide any given
interval [0, t] into n segments, Δt = t∕n, and let the movement Xi(1 ≤ i ≤ n)
for each segment be ±Δx with probability 1/2, with Δx set to Δx = 𝜎

√
Δt.

We have E[Xi] = 0,Var(Xi) = (Δx)2 = 𝜎2t∕n. By the central limit
theorem

lim
n→∞

1
√

n

n∑

i=1

Xi − 0
√
𝜎2t∕n

∼ N(0,1)

1

𝜎
√

t

∑

i≥1

Xi ∼ N(0,1)

B(t) =
∑

i≥1

Xi ∼ N(0, 𝜎2t)

Brownian motion is a deep mathematical subject and has many proper-
ties: (strong) Markov, martingale, independent increments, everywhere con-
tinuous, but nowhere differentiable. For our purposes, we will just use the
fact that the increments of a Brownian motion B(t) are independent and
jointly normal: for any t1 < t2 < t3, B(t3) − B(t2) is independent of B(t2) −
B(t1) and

B(t2) − B(t1) ∼ N(0, 𝜎2(t2 − t1))

The standard Brownian motion starts at 0, B(0) = 0, and has no drift,
E[B(t)] = 0. If

B(t) ∼ N(B(0) + 𝜇t, 𝜎2t)

then B(t) is called a Brownian motion started at B(0) with drift 𝜇 and diffu-
sion coefficient 𝜎. It can be thought of as the limit of a scaled (by 𝜎) standard
random walk with a constant drift 𝜇 per unit time.
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6.1.3 Lognormal Distribution, Geometric Brownian Motion

The process eB(t) is called a geometric Brownian motion (GBM), see
Figure 6.2, and is typically used to model the evolution of asset prices.
Figures 6.1 and 6.2 show a 20-sample realization of a standard and geo-
metric Brownian motion, which can be thought of as the limiting behavior
of a random walk with drift and exponentiated as shown in Figure 6.3.

Since B(t) is normal, the geometric Brownian motion eB(t) is lognormal.
A random variable Y is said to have a lognormal distribution, Y ∼ LN(𝜇, 𝜎2),
if its natural log is a N(𝜇, 𝜎2) random variable, or in other words, Y ∼
eN(𝜇,𝜎2). While a normal random variable can take on any value, a LN(𝜇, 𝜎2)
random variable can only take positive values. Table 6.1 shows some of the
properties of normal and lognormal distributions, and Figure 6.4 shows the
pdfs of the normal and lognormal random variables with the same mean and
variance.

6.2 BLACK-SCHOLES-MERTON CALL FORMULA

The Black-Scholes-Merton (BSM) formula is based on modeling the return
of the underlying asset as a Brownian motion. Specifically, we model

FIGURE 6.1 Standard Brownian motion.
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FIGURE 6.2 Geometric Brownian motion.

the underlying asset’s evolution by focusing on its relative changes over
time via

A(t) = A(0)eR(t)×t

where R(t) is the continuously compounded random rate of return over [0, t]

R(t) = 1
t

ln
A(t)
A(0)

Assuming that R(t) × t follows a Brownian motion with drift 𝜇, its distribu-
tion at any time is normal

R(t) × t ∼ N(𝜇 × t, 𝜎2 × t)

which implies the asset value will be lognormal

A(t)∕A(0) ∼ LN(𝜇 × t, 𝜎2 × t) (6.1)
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FIGURE 6.3 Random walk with drift (top); exponentiated random walk with drift
leading to geometric Brownian motion (bottom).

The parameter 𝜎 is known as the percentage, proportional, or log volatility,
or just volatility. The lognormal distribution is somewhat close to the empir-
ical distributions observed for equities—although the empirical/realized dis-
tributions tend to have fatter tails than lognormal—and is commonly used
for equity, FX, and commodity options.

Recall that in an arbitrage-free risk-neutral world with constant contin-
uously compounded interest rates, Formula 5.13 must hold

A(0) = E[e−rtA(t)]

⇒ E[A(t)] = A(0)ert = FA(0, t) (6.2)
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TABLE 6.1 Properties of normal and lognormal random variables.

Normal Lognormal
N(𝝁, 𝝈2) LN(𝝁, 𝝈2)

pdf 1
√

2𝜋𝜎2
e
−
(x − 𝜇)2

2𝜎2 1

x
√

2𝜋𝜎2
e
−
(ln(x) − 𝜇)2

2𝜎2

Mean 𝜇 e𝜇+𝜎
2∕2

Variance 𝜎2 e2𝜇+𝜎2 (e𝜎2 − 1)
Mode 𝜇 e𝜇−𝜎

2

Lognormal

Normal

μ

FIGURE 6.4 Normal and lognormal random variables with same mean and variance.
Lognormal random variables have fatter tails than normal random variables.

Using the fact that the mean of a LN(𝜇, 𝜎) random variable is e𝜇+𝜎
2∕2,

combining Formulas 6.1 and 6.2, we have

E[A(t)] = A(0)ert = A(0)e(𝜇+𝜎2∕2)t

which implies

𝜇 = r − 1
2
𝜎2



Trim Size: 6in x 9in Sadr838401 c06.tex V1 - 03/18/2022 3:34pm Page 149�

� �

�

Option Pricing 149

in a risk-neutral setting. The distribution of A(t) is then fully specified by the
risk-free rate and volatility

A(t)∕A(0) ∼ LN
((

r − 1
2
𝜎2

)

t, 𝜎2t
)

or equivalently

A(t) = A(0)eN
((

r− 1
2 𝜎

2
)

t,𝜎2t
)

(6.3)

Having adjusted the evolution process for the underlying to ensure
risk-neutrality, we can compute the price of any contingent claim as the
expected discounted value of its payoff. Specifically, for a call option with
expiry T and strike K, we need to compute

C(0) = e−rTE[max(0,C(T) − K)]

To compute this, it will be helpful to define X = A(t)∕FA(0, t). From For-
mula 6.3, we have

X = A(t)∕FA(0, t) ∼ LN
(

− 1
2
𝜎2t, 𝜎2t

)

with density function

fX(x) =
1

x
√

2𝜋𝜎2t
e
−
(ln(x) + 𝜎2t∕2)2

2𝜎2t (6.4)

Using Formula 6.4, we can evaluate today’s value of a call option as follows

C(0) = e−rTE[max(0,A(T) − K)]

= e−rTFA(0,T)E[max(0,A(T)∕FA(0,T) − K∕FA(0,T))]

= e−rTFA(0,T)
∫

max(0,x − K∕FA(0,T))fX(x)dx

= e−rT
[

FA(0,T)
∫K∕FA

xfX(x)dx − K
∫K∕FA

fX(x)dx
]

The first integral

I1 =
∫K∕FA

xfX(x)dx



Trim Size: 6in x 9in Sadr838401 c06.tex V1 - 03/18/2022 3:34pm Page 150�

� �

�

150 MATHEMATICAL TECHNIQUES IN FINANCE

can be evaluated by completing a square (see Exercises) and equals N(d1)
where N(x) is the CDF of a standard normal random variable

N(x) = P[N(0,1) ≤ x] =
∫

x

−∞

1
√

2𝜋
e−u2∕2du

and

d1 =
ln(FA(0,T)∕K)

𝜎
√

T
+ 1

2
𝜎
√

T

The second integral

I2 =
∫K∕FA

fX(x)dx

= P[X > K∕FA]

= P[A(T) > K] = N(d2) (6.5)

where d2 = d1 − 𝜎
√

T. Putting the two pieces together, we have the cele-
brated BSM formula for a European exercise call option

C(0) = e−rT[FA(0,T)N(d1) − KN(d2)]

d1,2 =
ln(FA(0,T)∕K)

𝜎
√

T
± 1

2
𝜎
√

T
(6.6)

EXAMPLE 1

Let today’s price of an asset be A(0) = 100, with volatility 𝜎 = 10%,
and continuously compounded risk-free interest rate r = 3.9605%. The
6-month forward price is

F = FA(0,0.5) = 100e(3.9605%)(0.5) = 102

The prices of 6-month expiry (T = 0.5) call options with strike set to
be at-the-money spot (ATM, K = A(0)), at-the-money forward (ATMF,
K = F), one point in-the-money forward (ITM, K < F), and one point
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out-of-the-money forward (OTM, K > F) are shown in Table 6.2. For
example, for the at-the-money spot K = A(0) case

d1,2 =
ln(102∕100)

0.10
√

0.5
± 1

2
(0.10)

√
0.5

and for the at-the-money forward (ATMF) case

d1,2 =
ln(102∕102)

0.10
√

0.5
± 1

2
(0.10)

√
0.5 = ±1

2
(0.10)

√
0.5

TABLE 6.2 Six-month call option prices with different strikes.

Type A(0) F K d1 d2 N(d1) N(d2) Call

ATM 100 102 100 0.315405 0.244964 62.38% 59.67% 3.882
ATMF 100 102 102 0.035355 −0.03536 51.41% 48.59% 2.82
ITM 100 102 101 0.174688 0.103977 59.63% 54.14% 3.324
OTM 100 102 103 −0.10262 −0.17333 45.91% 43.12% 2.371

As will be seen later, the term N(d1) is the amount of the under-
lying asset needed in a self-financing replicating portfolio, while N(d2)
is the risk-neutral probability that the option finishes in the money,
N(d2) = P[A(T) > K].

6.2.1 Put-Call Parity

To derive the value of a European put for an asset with no interim cash flows
until expiration, rather than repeating the above procedure and evaluating
the integral based on the put payoff, we appeal to an arbitrage argument by
considering the following two portfolios:

1. A T-expiry call option with strike K, and cash holding equal to the
present value of K, that is, Ke−rT . At expiration, if A(T) > K, the pay-
off is A(T) − K + K, and if A(T) ≤ K, the payoff is K. The payoff at
expiration is, therefore, max(A(T),K).

2. A T-expiry put option with strike K, and the underlying asset, A(0).
At expiration, if A(T) < K, the payoff is (K − A(T)) + A(T) = K and if
A(T) ≥ K, the payoff is A(T). The payoff at expiration is, therefore,
max(A(T),K).
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Since the two portfolios will have the same value, max(A(T),K), at expi-
ration T, they must have the same value today, and we must have

P(0) + A(0) = C(0) + Ke−rT (6.7)

This identity is called a put-call parity, and holds for European-style options
on underlying assets with no interim cash flows and is the financial restate-
ment of the identity x = max(0,x) − max(0,−x).

Using Formula 6.7, and setting F = FA(0,T) = A(0)erT , we compute
today’s value of a European put option

P(0) = C(0) − e−rT[K − A(0)erT]

= e−rT[FN(d1) − KN(d2) + K − F]

= e−rT[K(1 − N(d2)) − F(1 − N(d1))]

= e−rT[KN(−d2) − FN(−d1)]

In Formula 6.7, when the strike equals the forward value K = FA(0,T) =
A(0)erT , we have an at-the-money forward (ATMF) option, and ATMF call
and put option prices coincide: P(0) = C(0).

Table 6.3 shows analogous put prices as Table 6.2. Note that the def-
inition of the in-the-money and out-of-the-money options for puts are the
reverse of those for calls.

6.2.2 Black’s Formula: Options on Forwards

The BSM formula was extended in 1976 by Black (Black, 1976) to price
options on forwards and the Black76 model and formulas are widely used
for exchange-traded futures and options on them. A Te-expiry call option
on a T-delivery forward has payoff

max(0,FA(Te,T) − K) = max(0,A(Te)er(T−Te))

TABLE 6.3 Six-month put option prices with different strikes.

Type A(0) F K d1 d2 N(−d1) N(−d2) Put

ATM 100 102 100 0.315405 0.244964 37.62% 40.33% 1.921
ATMF 100 102 102 0.035355 −0.03536 48.59% 51.41% 2.82
OTM 100 102 101 0.174688 0.103977 43.07% 45.86% 2.344
ITM 100 102 103 −0.10262 −0.17333 54.09% 56.88% 3.351
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at expiration, and its today’s value can be computed via the BSM formula
to provide

C(0) = e−rTeE[max(0,FA(Te,T) − K)]

d1,2 =
ln(FA(0,T)∕K)

𝜎
√

Te

± 1
2
𝜎

√

Te

(6.8)

Note that when the option expiration equals the futures expiration,
Te = T, Black’s formula reduces to the BSM formula.

6.2.3 Call Is All You Need

One can continue along the above lines to derive analytical formulas
for European-Style options with more complicated payoffs. In practice,
however, the call formula is all one really needs to evaluate European-style
options. Indeed, any real-world option payoff is economically equal to—or
can be approximated arbitrarily closely—via a portfolio of calls and puts,
and since by put-call parity a put can be priced via a forward and a call,
calls serve as the salient building blocks of European-style options.

The following is a list of some common European-style payoffs encoun-
tered in practice:

1. Straddle: A put and call with same strike K.
2. Strangle: A K1-put and K2-call where K1 < K2.
3. Collar, Risk-Reversal: Being long a collar is being long a K2-call, and

short a K1-put with K1 < K2. The strikes K1,K2 are usually chosen
around the forward rates, so that the package is worth 0, that is, a
cost-less collar.

4. Call/Put Spread: Being long a call-spread is being long a K1-call, and
short a K2-call, with K1 < K2.

5. Ratio: Most common is a 1 x 2 (1 by 2) ratio. Being long a 1 x 2 call
ratio means being long one K1-call, and short two K2-calls.

6. Fly: Being long a call-fly is being long one K1-call, short two K2-calls,
and long one K3-calls, with K1 < K2 < K3, and K2 − K1 = K3 − K2. This
is usually used to pin down and express strong views on the underlying
asset’s value at expiration, leading to pin risk for the option-seller.

7. Digitals: Digi-calls, Digi-puts. These can be considered as limits of call
or put spreads as the two strikes converge.

8. Knock-in Call: A K1-strike call with K2-knock-in (K1 < K2) has the same
payoff of a K1-call, but only if the underlying is above K2 at expiration.
The payoff is zero if the underlying is below K2 at expiration. This can
easily be priced as a K2-call plus a K2-Digi-call with payoff K2 − K1.
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Straddle Strangle Collar
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Digital Knock-in
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x 2

Fly

x 2

FIGURE 6.5 European-style option payoffs.

These are shown in Figure 6.5. All of the products can be priced via
the BSM formula, as the payoffs are simple portfolios of different-strike
calls/puts and digi-calls/puts.

6.3 IMPLIED VOLATILITY

Given a volatility parameter 𝜎, the BSM formula provides today’s value of a
call option. Equivalently, given the market price of a call option, one can use
the BSM formula to back out the implied volatility and use it to determine
whether the call is rich, cheap, or fair.

EXAMPLE 2

With A(0) = 100, r = 3.9605%,FA(0,0.5) = 102, let the market price
of a K = 103 call option be C(0) = 3. The implied volatility of this
price computed from the BSM call formula using a solver turns out to
be 𝜎Implied = 14%, which one might find to be too high relative to the
standard deviation of the return history of the asset, say 12%. Alter-
natively, one might take a view that for the next six months, the price
volatility will be higher than usual (12%) and, hence, the 14% is a fair
value for volatility over this time period.
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6.3.1 Skews, Smiles

The implied volatility parameter derived from market prices of options with
different strikes and expirations are not constant and are both expiration and
strike dependent, 𝜎(T,K). Moreover, even these 𝜎(T,K)’s are not constant
and change as underlying’s price changes, 𝜎(T,K,A(T)).

It is usually observed that implied volatility of options for low strikes
is higher than the implied volatilities of ATM options, leading to volatility
skew. Additionally, implied volatilities increase for out of the money options
for both low and high strikes, leading to volatility smile. The skew is mainly
due to the observation that market sell-offs are typically large and disruptive.
The smile is primarily due to the reluctance of options sellers to sell deep
out-of-the-money options (lottery tickets), see Figure 6.6.

Since a call option’s payoff is max(0,A(T) − K), the first derivative with
respect to K is a step function and the second derivative is a delta function,
resulting in the following convolution integral

𝜕2C
𝜕K2

= e−rT
∫

𝜕2max(0,x − K)
𝜕K2

fA(x)dx

= e−rT
∫

𝛿(x − K) fA(x)dx

= e−rTfA(K) (6.9)

where fA(x) is the risk-neutral density function of the asset. Given the mar-
ket prices for options of all strikes, Formula 6.9 can be used to extract the
market-implied risk-neutral distribution.

Skew

Smile

Strike (K)

Im
p

lie
d

 V
ol

 σ
 (

K
)

FIGURE 6.6 Skew and smile effect for out-of-the-money options.
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6.4 GREEKS

Recall that BSM formulas were obtained as special instances of risk-neutral
valuation under normal distributions for proportional returns. We should
not forget that risk-neutral valuation gives the same value as a self-financing
replicating portfolio. The question arises as to what happened to the repli-
cating portfolio, and how do we replicate an option’s payoff? The answer
lies in the Greeks.

Recall that in our binomial setting, the replicating portfolio was Qn
units of the underlying asset financed via a risk-free loan. The Qns had to
be (dynamically) changed in response to market movements. In the simple
one-step binomial model, we computed

Q0 =
Cu − Cd

Au − Ad
,

which can be interpreted as the sensitivity of the option price with respect
to the underlying asset. In the continuous time limit

Q →
𝜕C
𝜕A

and the replicating portfolio consists of 𝜕C
𝜕A

units of the asset. This is called
the delta of the option. The delta of a call/put is a number with absolute
value between 0 and 1, and expresses how much of the underlying asset is
needed to replicate the option payoff.

As we saw in the two-step binomial model, the Delta changes. The rate
of change of delta with respect to the underlying is called gamma and is
defined as 𝜕2C

𝜕A2 . Gamma measures the curvature of the option payoff, and is
also called the convexity.

The intrinsic value of an option is its value if it could be exercised
immediately—for example the difference between spot value and strike if
positive and 0 otherwise for a call option—and the time value of an option
is the difference between the option value and its intrinsic value. Time
value converges to 0 as one gets closer to expiration. Theta, or time-decay,
is defined as the rate of change of option value due to shrinking time to
expiration, 𝜕C(t,T)

𝜕t
. An option holder typically loses time value as one gets

closer to expiry.
Finally, the sensitivity of an option with respect to volatility 𝜕C

𝜕𝜎
is called

vega.
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TABLE 6.4 BSM formulas and Greeks.

Call C(t,T) Put P(t,T)

Payoff at T max(0,A(T) − K) max(0,K − A(T))
Premium e−r(T−t)[FN(d1) − KN(d2)] e−r(T−t)[KN(−d2) − FN(−d1)]

Delta
(

𝜕
𝜕A

)

N(d1) N(d1) − 1

Gamma
(

𝜕2

𝜕A2

) N′(d1)
A(t)𝜎

√
T − t

N′(d1)
A(t)𝜎

√
T − t

Theta
(
𝜕

𝜕t

)

−
𝜎A(t)N′(d1)

2
√

T − t
− re−r(T−t)KN(d2) −

𝜎A(t)N′(d1)

2
√

T − t
+ re−r(T−t)KN(−d2)

Vega
(
𝜕
𝜕𝜎

)

A(t)
√

T − tN′(d1) A(t)
√

T − tN′(d1)

6.4.1 Greeks Formulas

Table 6.4 summarizes various BSM formulas and their Greeks for 0 ≤ t ≤ T

F = FA(t,T) = A(t)er(T−t), d1,2 =
ln(F∕K)

𝜎
√

T − t
± 1

2
𝜎
√

T − t,

N(d) =
∫

d

−∞

1
√

2𝜋
e−x2∕2dx, N′(x) = 1

√
2𝜋

e−x2∕2.

6.4.2 Gamma versus Theta

As seen in Figures 6.7 and 6.8, the BSM call/put formulas are convex func-
tions of the underlying asset, and their delta changes when the underlying
asset moves.

Note than for any convex function, we have f (y) − f (x) ≥ f ′(x)(y − x).
This can be proven from the definition of a convex function

(0 ≤ t ≤ 1) f (x + t(y − x)) = f ((1 − t)x + ty) ≤ (1 − t) f (x) + t f (y)

therefore

(y − x)
f (x + t(y − x)) − f (x)

t(y − x)
≤ f (y) − f (x)

Taking the limit as t → 0 shows the result.
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FIGURE 6.7 Call option value and its delta.
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FIGURE 6.8 Put option value and its delta.

Since call/put is convex, the owner of a call/put can delta-hedge—take
an offsetting position of size 𝜕C∕𝜕A in the underlying—and always incur a
positive PnL as the underlying asset moves

[C(A2) − C(A1)] −
𝜕C
𝜕A

(A1)[A2 − A1] ≥ 0

For example, the owner of a call option who wants to delta-hedge needs
to sell 𝜕C∕𝜕A of the underlying asset. If the underlying asset goes up in
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Gamma PnL

Gamma PnL

Time Decay (Theta PnL) 

FIGURE 6.9 Convexity PnL versus time decay for a delta-hedged call option.

value, 𝜕C∕𝜕A also increases due to convexity of the call formula, and the
owner has to sell more at the higher price to remain delta-hedged. Similarly,
if the underlying asset goes down in value, 𝜕C∕𝜕A also decreases, and the
owner needs to be short less, i.e., has to buy back the underlying asset at the
lower price to remain delta-hedged. Each buying at a low price and selling
at a high price to remain delta-hedged accrues a positive PnL (gamma PnL).
However, as each day goes by, the option loses time value (time decay), see
Figure 6.9.

The interplay of gamma and theta PnL is similar for a put. The delta of a
put is negative, so the owner of a put option who wants to delta-hedge needs
to buy |𝜕C∕𝜕A| of the underlying asset. If the underlying asset goes up in
value, |𝜕C∕𝜕A| decreases, and the put owner needs to own less of the under-
lying asset, i.e., they have to sell at the higher price to remain delta-hedged.
Similarly, if the underlying asset goes down in value, |𝜕C∕𝜕A| increases, and
the put owner needs to buy more of the underlying asset at the lower price
to remain delta-hedged.

For either the call or the put, the owner of the option who wants to
remain delta-hedged needs to buy low, sell high, which is the benefit of being
long gamma or convexity at the expense of time decay. The situation is the
reverse for the seller: the seller of a call or a put who is delta-hedging is short
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convexity or gamma and has to buy high, sell low, but benefits from time
decay.

If the realized volatility over the life of the option is higher/lower than
the volatility used to price the option, then the option buyer who delta-
hedges makes/loses money. Similarly an option seller who delta-hedges will
make/lose money if realized volatility is less/more than the volatility used to
price the option.

6.4.3 Delta, Gamma versus Time

As one gets closer to expiration, T − t → 0, the delta approaches a step
function (see Figure 6.10) and, hence, the gamma of an in-the-money or
out-of-the-money call or put converges to 0. However, for at-the-money
options, the gamma becomes the derivative of a step function evaluated at
the step point. The derivative of a step function is characterized by Dirac’s
delta function, 𝛿(x), with 𝛿(0) = ∞. For ATM options, gamma keeps rising as
one gets closer to expiration, requiring constant balancing of the delta back
and forth from 0% to 100% as the underlying moves around the strike and
the option moves in and out of the money. This delta-hedging of high gamma
ATM options is a major challenge to option traders who take options into
expiration.

0%

25%

50%

75%

100%

texp ≈ 0

texp > 0

FIGURE 6.10 Delta as a function of time to expiration, texp = T − t.
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6.5 DIFFUSIONS, ITO

The BSM call formula was originally derived by first setting up the relation-
ship between the Greeks of a European-style contingent claim as a partial
differential equation (PDE) and then solving the PDE subject to the bound-
ary condition of the claim’s payoff at expiration. The BSM PDE requires
the following result, which can be considered as the chain rule applied to
diffusions.

Ito’s Lemma. Let A(t, 𝜔) be a diffusion following

dA(t, 𝜔) = 𝜇(t, 𝜔)dt + 𝜎(t, 𝜔)dB(t, 𝜔) (6.10)

Then any function f (t,A) satisfying some regularity conditions is also a dif-
fusion following

df =
𝜕f
𝜕t

dt +
𝜕f
𝜕A

dA + 1
2
𝜕2f
𝜕A2

(dA)2

with the following multiplication rule for differentials (Oksendal, 1992)

× dt dB(t, 𝜔)

dt 0 0
dB(t, 𝜔) 0 dt

Therefore

df =
(
𝜕f
𝜕t

+ 𝜇(t, 𝜔)
𝜕f
𝜕A

+ 1
2
𝜕2f

𝜕A2
𝜎2(t, 𝜔)

)

dt +
𝜕f
𝜕A

𝜎(t, 𝜔)dB

Formula 6.10 is a shorthand for the following integral equations

A(t) − A(0) =
∫

t

0
𝜇dt +

∫

t

0
𝜎dB

where

∫
𝜇dt = lim

n

n∑

i=1

𝜇(ti, 𝜔) × (ti+1 − ti) (6.11)
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and

∫
𝜎dB = lim

n

n∑

i=1

𝜎(ti, 𝜔)) × (B(ti+1) − B(ti)) (6.12)

for partitions {ti}n
i=1 of [0, t]. The limit in Formula 6.11 is the standard

point-wise convergence limit, albeit with potentially random terms 𝜇(ti, 𝜔).
The second limit in Formula 6.12 is the Ito integral and is an L2 limit: a
sequence of random variables Xn is said to converge to X in L2 sense if the
L2 distance between them vanishes

lim
n

E[(Xn − X)2] = 0

6.5.1 Black-Scholes-Merton PDE

Given an asset A following a diffusion as above and given a contingent claim
with payoff f (t,A) form a delta-hedged portfolio P as follows

P = f −
𝜕f
𝜕A

A

Then

dP = df −
𝜕f
𝜕A

dA

=
(
𝜕f
𝜕t

+ 𝜇(t, 𝜔)
𝜕f
𝜕A

+ 1
2
𝜕2f

𝜕A2
𝜎2(t, 𝜔)

)

dt +
𝜕f
𝜕A

𝜎(t, 𝜔)dB(t, 𝜔)

−
𝜕f
𝜕A

(𝜇(t, 𝜔)dt + 𝜎(t, 𝜔)dB(t, 𝜔))

=
(
𝜕f
𝜕t

+ 1
2
𝜕2f

𝜕A2
𝜎2(t, 𝜔)

)

dt (6.13)

showing the relationship between theta and gamma of a delta-hedged port-
folio.

Since there are no random/stochastic terms in Formula 6.13, the portfo-
lio is instantaneously risk-less and, hence, lack of arbitrage implies it must
earn the instantaneous risk-free rate r

dP
P

= rdt
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or dP = rPdt. By equating 6.13 to rPdt, we get

(
𝜕f
𝜕t

+ 1
2
𝜕2f

𝜕A2
𝜎2(t, 𝜔)

)

dt = r
(

f −
𝜕f
𝜕A

A
)

dt

⇒
𝜕f
𝜕t

+ 1
2
𝜕2f

𝜕A2
𝜎2(t, 𝜔) = r

(

f −
𝜕f
𝜕A

A
)

⇒
𝜕f
𝜕t

+ rA
𝜕f
𝜕A

+ 1
2
𝜕2f

𝜕A2
𝜎2(t, 𝜔) = rf (6.14)

clearly indicating the relationship between theta, delta, and gamma of any
contingent claim.

The BSM formula was derived by assuming that the asset follows the
following diffusion

dA(t, 𝜔)
A(t, 𝜔)

= 𝜇 × dt + 𝜎 × dB(t, 𝜔)

for constant parameters 𝜇, 𝜎, resulting in lognormal dynamics for the asset
(see Exercises). This implies 𝜎(t, 𝜔) = 𝜎 × A(t, 𝜔) in Formula 6.14, leading to
the following BSM PDE

𝜕f
𝜕t

+ rA
𝜕f
𝜕A

+ 1
2
𝜕2f

𝜕A2
𝜎2A2 = rf (6.15)

By invoking the boundary condition f (T,A(T)) = max(0,A(T) − K), and
converting Formula 6.15 into the classical heat equation, u(x, t)

𝜕u
𝜕t

= 𝜕2u
𝜕x2

, x, t ≥ 0 (6.16)

via appropriate substitutions, BSM arrived at Formula 6.6 for the price of a
call option (Black and Scholes, 1973).

6.5.2 Call Formula and Heat Equation

Deriving the BSM formula for call options by solving the PDE relies on the
solution to the classic heat equations. The steps are as follows:

1. The following formula

u(x, t) = 1

2
√
𝜋t ∫

∞

−∞
u(x,0)e−(s−x)2∕4tds (6.17)
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is the solution to the initial value problem

(−∞ < x < ∞, t > 0) 𝜕u
𝜕t

= 𝜕2u
𝜕x2

for well-defined functions with initial boundary u(x,0) (Brown and
Churchill, 2012).

2. Let f (A, t) be the t-price of a European call option on an asset A(t) with
strike K and expiring at T. The BSM PDE applied to the call option is

𝜕f
𝜕t

+ 1
2
𝜎2A2 𝜕2f

𝜕A2
+ rA

𝜕f
𝜕A

− rf = 0

with terminal boundary conditions

f (A(T),T) = max(0,A(T) − K)

f (A(t), t) → 0 as A(t) → 0

f (A(t), t) → A(t) as A(t) → ∞

3. The following transformation turns the backward equation with termi-
nal boundary condition to a forward equation

f (A, t) = e−r(T−t)g(B, 𝜏) (6.18)

where
c = r − 𝜎2∕2

B = (2c∕𝜎2) ln(A∕K) + c × (T − t)

𝜏 = 2c2

𝜎2
× (T − t)

satisfying
𝜕g
𝜕𝜏

=
𝜕2g

𝜕B2
, 𝜏 ≥ 0

with initial boundary condition

g(B,0) =
{

0, B < 0
K(eB𝜎2∕(2c) − 1) B ≥ 0.

(6.19)
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4. Using the result in Step 1, the solution to Formula 6.19 is

g(B, 𝜏) = 1
√

2𝜋 ∫

∞

−B∕
√

2𝜏
K(eB+z

√
2𝜏𝜎2∕(2c) − 1)e−z2∕2dz

Using the substitutions in Formula 6.18 and some tedious algebra recov-
ers the BSM call Formula 6.6.

The equivalence of the BSM call formula as a solution to the parabolic
heat equation and also as an expected value of a functional of a Brownian
motion is not a coincidence, and is in fact a consequence of the Feynman-Kac
formula.

6.6 CRR BINOMIAL MODEL

The Cox-Ross-Rubinstein (CRR) binomial model as shown in Figure 6.11
is a discrete time version of the asset evolution under the lognormal dynam-
ics posited by BSM and recovers BSM call/put option prices in the limit

…

…

…

…

u = eσ   Δt = 1/d

p = (erΔt – d)/(u – d)

A(0)

A(0)u

A(0)u2

A(0)u2d

A(0)ujdn– j

A(0)ujdn+1– j

A(0)uj+1dn– j

p

A(0)ud2

A(0)d2

t0 = 0 t1 = Δt t2 = 2Δt t3 = 3Δt tn = nΔt tn+1 = (n + 1)Δt

A(0)d3

A(0)ud

A(0)d

A(0)u3

p

√

FIGURE 6.11 CRR binomial model.
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as the length of time between steps converges to 0. Specifically, the time
between now t = 0 and a horizon date—typically expiration T—is parti-
tioned as {t0 = 0, t1, . . . , tN = T} where

ti+1 − ti = Δt = T∕N

Given a volatility 𝜎, let

u = e𝜎
√
Δt, d = 1∕u = e−𝜎

√
Δt

The process begins at A(t0) = A(0). At any time tn, beginning from state
A(tn, ⋅), the underlying moves up to A(tn, ⋅) × u or down to A(tn, ⋅) × d at tn+1
with up movement probability

p = erΔt − d
u − d

= erΔt − e−𝜎
√
Δt

e𝜎
√
Δt − e−𝜎

√
Δt

The above choice for p ensures risk-neutrality

Etn
[A(tn+1)] = A(tn)erΔt

and for sufficiently small Δt, we can ensure that the lattice is arbitrage-free,
0 ≤ p ≤ 1

e−𝜎
√
Δt ≤ erΔt ≤ e𝜎

√
Δt

For each time tn, we have

(0 ≤ n ≤ N)(0 ≤ j ≤ n) P[A(tn) = A(0)ujdn−j] =
(

n
j

)

pj(1 − p)n−j

Today’s value of a contingent claim with payoff C(tN,A(tN)) at expiration
tN = T is

C(0) = e−rtN

N∑

j=0

P[A(tN) = A(0)ujdN−j]C(tN,A(0)ujdN−j)

= e−rtN

N∑

j=0

(
n
j

)

pj(1 − p)N−jC(tN,A(0)ujdN−j)
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For example, today’s value of a call option with strike K is

C(0) = e−rtN

N∑

j=0

(
n
j

)

pj(1 − p)N−jmax(0,A(0)ujdN−j − K)

By using a variant of the central limit theorem, CRR (Cox et al., 1979),
proved that this formula converges to the BSM call formula as N → ∞
as expected.

6.6.1 CRR Greeks

It is possible to arrive at the interrelationship of the Greeks (delta, gamma,
theta) in the CRR model. To this end, we can write

puCu(t + Δt) + (1 − pu)Cd(t + Δt) − C(t)erΔt = 0 (6.20)

where

Cu,d(t + Δt) = C(t + Δt,A(t)e±𝜎
√
Δt)

By expanding C(t,A(t)) and any exponential term via the Taylor series, and
ignoring any terms with power of Δt higher than 1 (o(Δt) terms), we have

C(t,A(t))erΔt ≈ C(t,A(t)) + C(t,A(t))rΔt

pu,d ≈ 1
2
±

r − 𝜎2Δt∕2

2𝜎
√
Δt

(6.21)

Cu,d(t + Δt) ≈ C(t,A(t)) +
[
𝜕C
𝜕t

+ 1
2
𝜕2C
𝜕A2

A2𝜎2
]

Δt + 𝜕C
𝜕A

A
[

1
2
𝜎2Δt ± 𝜎

√
Δt

]

Substituting Formula 6.21 for Formula 6.20 and dividing by Δt recovers the
BSM PDE, Formula 6.15

𝜕C
𝜕t

+ rA
𝜕C
𝜕A

+ 1
2
𝜕2C
𝜕A2

𝜎2A2 = rC

6.7 AMERICAN-STYLE OPTIONS

Options allowing the owner to exercise their right at any time until
the option expiration date are called American-style exercise options. A
common variant is Bermudan options where the option can be exercised
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at only a set of specific dates, for example, coupon dates for a bond with
periodic coupon dates. In either case, the option owner has only one chance
to exercise the option and once exercised the option expires.

The additional flexibility of early exercise versus holding on to the
option until expiration makes an American option worth more than a
European one. Let CE(t,T) and CA(t,T) be the t-price of a T-expiry
European and American option, respectively, with the same underlying
transaction, for example, purchase of an asset for a specific price K. Given
that an American option can always be held and not exercised prior to T,
CA(t,T) ≥ CE(t,T) for t ≤ T.

6.7.1 American Call Options

For American-style call options on an underlying asset with no interim cash
flows, there is no advantage in early exercise as one is just paying the strike
K earlier than T and, hence, foregoing, potential positive interest on K from
exercise date to T.

Specifically, assume CA(t,T,K) > CE(t,T,K). In this case, one can
sell the American call and buy a European call and either hold on to the
positive difference or invest it at positive interest to T, ending up with
FV(CA − CE) ≥ CA − CE > 0 at T.

1. If the American call that was sold is not exercised prior to T, at expiry
one is short and long call options with identical strikes having net eco-
nomic value of 0.

2. If the American call that was sold is exercised earlier than T, then the
seller can short the asset, deliver it to the American option holder, and
receive K, which can be held or invested to earn positive interest until
T. At T, one needs to cover the short position by buying the asset:
(a) If A(T) > K, the European call can be exercised to buy the asset

for K.
(b) If A(T) ≤ K, the European call option expires worthless, but one can

purchase the asset and pay at most K.
In either case, the cost of buying the asset to cover the short is at
most K.

In all the above cases, one has generated at least the positive amount
(CA − CE) > 0 with no future economic liability. In the absence of arbitrage,
CA(t,T,K) = CE(t,T,K) and the American call should not be exercised early.

American puts, however, can have a higher value than European ones.
This is due to the fact that the asset price cannot go below zero and one is
receiving the strike earlier. If the asset price is sufficiently low, the option is
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deep in the money, and receiving the strike price early offsets the low prob-
ability of the option getting deeper in the money, and, hence, early exercise
might be optimal. Therefore, for American options, the put-call parity equal-
ity is replaced by an inequality

CA(t,T,K) + PV(K) ≤ PA(t,T,K) + A(t)

6.7.2 Backward Induction

For American or Bermudan options where early exercise might be optimal, at
each exercise date the owner needs to decide whether to exercise immediately
or hold on to the option for a potentially larger payoff. The value of the
American option is then the option payoff under the optimal exercise policy.
Finding the optimal exercise policy to maximize the option payoff can be
solved by dynamic programming techniques where the optimal solution to a
larger problem includes the optimal solution to a smaller problem and can be
obtained recursively. For example, if the shortest path from New York to Los
Angeles goes through Chicago, then the Chicago to Los Angeles segment is
the shortest path between those two cities. By starting at the destination Los
Angeles and recursively calculating and updating the shortest paths between
Los Angeles and intermediate cities closer and closer to New York, we can
find the shortest path from New York to Los Angeles.

For Bermudan options, we divide the time until expiration into N
time-steps, and apply the backward induction algorithm. Let 0 = t0 < t1
< . . . < tN = T denote the exercise dates in the time-discretized version
of the process for the underlying asset, and express the option payoff as
a function of the underlying asset, C(t) = f (t,A(t)), for example, C(t) =
max(0,K − A(t)) for a put option with strike K.

■ At the last exercise date, tN, set the option value as the immediate
exercise (intrinsic) value C(tN,A(tN)) = f (tN,A(tN)).

■ Having found the option value at exercise date ti+1, move to the previous
exercise date, ti, and for each state, compute the option value as the
higher of immediate exercise value, f (ti,A(ti)), versus hold value, H(ti)

H(ti) = Eti
[Discounted C(ti+1)] = e−r(ti+1−ti)Eti

[C(ti+1,A(ti+1))]

resulting in

C(ti,A(ti)) = max(f (ti,A(ti)),H(ti))

at each state.
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FIGURE 6.12 Backward induction algorithm.

Working backwards, we arrive at today’s value of the option, C(0). American
options can be priced by computing Bermudan options with N exercise dates
and letting N → ∞.

An example of the algorithm in a binomial lattice setting like the CRR
model is shown in Figure 6.12, where 𝜔ij denotes jth random state at time ti,
0 ≤ i ≤ N,0 ≤ j ≤ i, and Aij,Cij,Hij are the corresponding underlying asset,
option, and hold value at state 𝜔ij. At expiration date tN = T, for each state
0 ≤ j ≤ N, CN,j = f (tN,AN,j), and at each prior time ti

Hij = e−r(ti+1−ti)[pijCi+1,j+1 + (1 − pij)Ci+1,j]

Cij = max(f (ti,Aij),Hij)

By going one time-step back at each iteration, we arrive at C(0).

6.8 PATH-DEPENDENT OPTIONS

We have so far considered options whose payoff only depends on the value
of the underlying asset at exercise date. Path-dependent options have payoffs
that depend on the value of the underlying asset on exercise date and previ-
ous dates. Examples of path-dependent options are:
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1. Lookback options: The option payoff is a function of the maximum or
minimum value of the underlying asset up to T.

2. Barrier/Knock-in/Knock-out options: The option payoff is some
function of the underlying asset but only if the underlying asset has
(knock-in) or has not (knock-out) crossed some barrier prior to exercise.

3. Asian options: The option payoff depends on the average price of the
underlying up to the exercise date.

Note that path-dependent options can be European-style or American-/
Bermudan-style exercise type.

Risk-neutral valuation remains the framework for the pricing of
path-dependent options; however, the usual discretization of the underlying
asset process into a lattice such as CRR breaks down: at each point, we not
only need to know where the underlying asset is, but also the path it took
to be there. For example, in a binomial model, after n time-steps, there are
2n distinct paths that need to be considered. This curse of dimensionality
forces one to resort to other methods to evaluate the risk-neutral pricing
integral.

The usual technique to evaluate path-dependent options is the Monte
Carlo simulation where the multidimensional risk-neutral integral is approx-
imated as the arithmetic average of the option value for a randomly selected
number of paths. For example, in an N-path simulation, we generate N ran-
dom paths for the evolution of the underlying asset and calculate the option
payoff under each path, and set the discounted value of the arithmetic aver-
age of the option payoff as the simulation price.

The simulation price is a random estimator of the value of the risk-
neutral expectation. By the law of large numbers, it can be shown that as
N gets larger, the simulation price converges to the value of the risk-neutral
expectation at the rate of 1∕

√
N, but any N-path simulation produces a

different estimate and, hence, simulation pricing suffers from run-to-run
variability, referred to as simulation noise.

To reduce simulation noise, a few variance reduction techniques are
employed, with antithetic sampling an easily implementable one for symmet-
ric random variables driving the process equation for the underlying asset.
For example, in simulating the Brownian motion driving the return of an
asset in the BSM framework, we discretize the process as a random walk.
For an N-path simulation of the random walk, we first generate N∕2 paths,
and add the N∕2 mirror images of each of the first N∕2 paths: if the ran-
dom walk has gone up/down at a time-step, its mirror image path has gone
down/up. This ensures that arithmetic average of the N sample paths have
0 mean. An example is shown in Figure 6.13.
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FIGURE 6.13 Two antithetic sample paths in a random walk.

Another variance reduction method is the control variate technique. In
this method, the simulation price of an option with a known analytical solu-
tion is calculated and the difference between the simulation price and the
correct price is used as a correction factor for a related option. For example,
let PBSM and PSim be the BSM and simulation prices of a call option, and
let CSim be the simulation price of a contingent claim with similar features
as a call option, say a call option with some path-dependent feature. The
control-variate adjusted value of the related contingent claim is

CSim − (PSim − PBSM)
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6.9 EUROPEAN OPTIONS IN PRACTICE

The BSM formula highlights the central role of volatility in option pricing,
and prescribes the replicating strategy for a given option. While the BSM
formula is commonly used, it has the following shortcomings:

■ One of the main assumptions of the formula is the ability to continually
delta-hedge as the underlying asset follows a diffusion with continuous
sample paths. In practice, asset prices generally grind up in value, but
experience sudden drops during periods of market turmoil.

For example, a seller of a put option who needs to replicate the
option needs to sell more and more as an asset price is falling, exacerbat-
ing the price drop. One of the culprits of the stock market crash of 1987
where the S&P 500 index dropped from 283 to 225 (a 20.5% drop)
on Black Monday, October 19, 1987, was the delta-hedging activity of
put sellers who had sold portfolio insurance products to institutional
investors.

■ The empirical distribution of stock price returns exhibit fatter tails than
prescribed by a lognormal distribution.

■ Skews, Smiles: The implied volatility parameter derived from market
prices of options with different strikes and expirations are not constant
and are both expiration and strike dependent, 𝜎(T,K). Moreover, even
these 𝜎(T,K)’s are not constant and change as underlying asset’s price
changes, 𝜎(T,K,A(t)).

For example, after the stock market crash of 1987, chastened option
sellers increased the premiums for puts, leading to higher implied volatil-
ities for low strike options (volatility skew). Moreover, the premiums for
out-of-the-money call and put options were increased, leading to higher
implied volatilities for high and low strikes (volatility smile).

While more sophisticated models such as jump-diffusion processes,
stochastic volatility, and constant elasticity of variance (CEV) models have
been offered to address the shortcomings, these remedies in turn have their
own shortcomings and challenges, and the BSM model and formula remains
the baseline model and quoting mechanism for options.
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EXERCISES

1. Let r = 4%,A(0) = 100, and let the price of a 3-month (T = 0.25) ATMF
(K = 100e0.04∕4) call option be 2.50.
(a) Using your favorite solver, calculate the implied volatility of the call

option.
(b) Calculate the delta, gamma, and vega of the call option.
(c) What is the price of an ATMF straddle (ATMF call + ATMF put)?
(d) Holding volatility constant, how much does the price of the above

straddle with K = 100e0.04∕4 change if the asset price A(0) changes
to 101?

(e) Holding A(0) = 100 constant, how much does the price of the above
straddle with K = 100e0.04∕4 change if volatility increases by 1%,
𝜎new = 𝜎old + 0.01?

(f) Starting with the equation for the price of an ATMF straddle, use
the Taylor series expansion of N(x) at 0 to approximate the price of
the ATMF straddle as a linear function of 𝜎.

2. In the CRR model, let A0 = 100, r = 4%, 𝜎 = 12%,T = 1, and N = 12.
(a) Calculate the price of a 1-year call option with K = 100.
(b) Calculate the price of the same option using the BSM call formula.
(c) Calculate the price of a 1-year European-style option with the fol-

lowing exotic payoff at expiration: C(T) = max(0,A2(T) − 10,000).
3. Normal and lognormal random variables.

(a) Let X ∼ N(𝜇, 𝜎2). Express CDF of X in terms of N(⋅), the CDF of a
standard normal random variable, N(0,1).

(b) Let X ∼ N(𝜇, 𝜎2). Show that P[|X − 𝜇| ≤ k𝜎] = 1 − 2N(−k), and
evaluate this expression for k = 1,2,3,4.
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(c) Let Y ∼ LN(𝜇, 𝜎2). Express CDF of Y in terms of N(⋅).
(d) Derive the probability density function of a LN(𝜇, 𝜎2) random vari-

able
d∕dyP[LN(𝜇, 𝜎2) ≤ y]

(e) For a LN random variable Y ∼ LN(𝜇, 𝜎2), we have

E[Y] = e𝜇+
1
2 𝜎

2
, Var(Y) = e2𝜇+𝜎2 (e𝜎2 − 1)

For given constants 𝛼, 𝛽2, solve for the parameters 𝜇, 𝜎2 so that
E[Y] = 𝛼 and Var(Y) = 𝛽2.

4. Derive the BSM call formula by completing the following steps. Let
F = FA(0,T) for notation ease. We have

C(0)erT = E[max(0,A(T) − K)]

= F × E
[

max
(

0,
A(T)

F
− K

F

)]

= F ×
∫

∞

−∞
max

(

0,x − K
F

)

fX(x)dx

= F ×
∫

∞

K∕F

(

x − K
F

)

fX(x)dx

= F ×
∫

∞

K∕F
xfX(x)dx − K ×

∫

∞

K∕F
fX(x)dx (6.22)

where fX(⋅) is the pdf of A(T)∕F ∼ LN
(

− 1
2
𝜎2T, 𝜎2T

)

fX(x) =
1

x
√

2𝜋𝜎2T
e
−
(ln x + 𝜎2T∕2)2

2𝜎2T .

(a) The integral in the second term of Formula 6.22 is the area under
the pdf of a LN(−𝜎2T∕2, 𝜎2T) random variable, which is just the
probability of falling in that region

I2 =
∫

∞

K∕F
fX(x)dx = P

[

LN
(

− 1
2
𝜎2T, 𝜎2T

)

≥ K∕F
]

Compute I2 in the above expression.
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(b) To compute the first term in Formula 6.22, do a change of variable:

z =
ln x + 𝜎2T∕2

𝜎
√

T

hence

dx = 𝜎
√

Te𝜎
√

Tz − 𝜎2T∕2dz

and complete the following steps

I1 =
∫

∞

K∕F
xfX(x)dx =

∫

∞

K∕F

1
√

2𝜋𝜎2T
e
−
(ln x + 𝜎2T∕2)2

2𝜎2T dx

=
∫

∞

ln K∕F

𝜎
√

T
+𝜎

√
T∕2

1
√

2𝜋
e
−
(z − 𝜎

√
T)2

2 dz

= P
[

N(𝜎
√

T,1) >
ln K∕F

𝜎
√

T
+ 1

2
𝜎
√

T
]

Compute I1 in the above expression to arrive at the BSM formula:
C(0) = e−rT(F × I1 − K × I2).

5. As seen in the proof of the BSM call formula, for a call

N(d2) = P[A(T)∕F ≥ K∕F] = P[A(T) > K]

that is, N(d2) is the probability that the call option finishes in the money.
(a) With A(0) = 100, 𝜎 = 10%,T = 1∕2, r = 5%, compute the value of

the following 6-month expiry digital payoff: $1,000,000 if A(T) >
100 and 0 otherwise.

(b) Using same values as above, compute the value of a 6-month expiry
knock-in call with payoff max(0,A(T) − 100), but only if A(T) >
110 (see last payoff in Figure 6.5).

6. The BSM formula for a call is

C(0) = e−rT[FA(0,T)N(d1) − KN(d2)]

= A(0)N(d1) − Ke−rTN(d2)

One might be tempted to calculate N(d1) as the delta, i.e.

𝜕C
𝜕A

= N(d1)
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However, this overlooks the fact that d1,2 are functions of FA(0,T) =
A(0)erT . Calculate delta using the chain rule as follows. Let F = FA(0,T)
for notation convenience. Since C(0)erT = FN(d1) − KN(d2) and
F = A(0)erT

𝜕C
𝜕A

=
𝜕[FN(d1) − KN(d2)]

𝜕F

= N(d1) + FN′(d1)
𝜕d1

𝜕F
− KN′(d2)

𝜕d2

𝜕F

(a) Compute the terms

𝜕d1

𝜕F
,

𝜕d2

𝜕F

(b) Complete the following steps and solve for Z

N′(d1,2) =
1

√
2𝜋

e
−1

2
d2

1,2

. . .

= 1
√

2𝜋

(K
F

)±1∕2
Z

(c) Using the above results, provide an expression for 𝜕C∕𝜕A.
7. In addition to futures, options on futures contracts are actively traded

on exchanges. The expiration date Te of the option need not coincide
with the forward date T of the futures contract, and the payoff of a call
option on a futures contract is

max(0,FA(Te,T) − K)

(a) Derive the commonly used Black’s formula for calls on futures by
completing the missing steps below

C(0) = e−rTeE[max(0,FA(Te,T) − K)]

. . .

= e−rTeer(T−Te)E[max(0,A(Te) − Ke−r(T−Te))]

. . .

= e−rTe [FA(0,T)N(d1) − KN(d2)]
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where

d1,2 =
ln(FA(0,T)∕K)

𝜎
√

Te

± 1
2
𝜎

√

Te

Note that when T = Te, Black’s formula reduces to the BSM for-
mula.

(b) On Friday, November 13, 2020, the S&P 500 December futures
contract, ESZ0, with a final settlement date of December 18, 2020
(third Friday of quarter-end) settled at 3580, and the 3600-strike
end-of-month (expiration date November 20, 2020) call option on
ESZ0 settled at 43.40. Using r = 0.75% (75 bps), and Act/365 for
fractions of time, find the implied volatility of the call option.

8. Normal and Lognormal Diffusions. Let A(t, 𝜔) be a diffusion, and let
𝜇, 𝜎 be two constants.
(a) Let

dA(t, 𝜔) = 𝜇dt + 𝜎dB(t, 𝜔)

and show that

A(t, 𝜔) ∼ N(A(0) + 𝜇t, 𝜎2t)

(b) Let

dA(t, 𝜔)
A(t, 𝜔)

= 𝜇dt + 𝜎dB(t, 𝜔)

and apply Ito’s lemma to f (t,A(t, 𝜔)) = ln(A(t, 𝜔)) to show that

A(t, 𝜔)∕A(0) ∼ LN((𝜇 − 1
2
𝜎2)t, 𝜎2t)

[Hint: Think of ∫ dB(u, 𝜔) as a limiting sum of successive increments of
a Brownian motion resulting in ∫ t

0 dB(u, 𝜔) = B(t, 𝜔) − B(0) = B(t, 𝜔) ∼
N(0, t) since B(0) = 0]

9. Bermudan Options. Using the CRR model with A0 = 100, r = 4%,
𝜎 = 10%,T = 0.5,N = 6.
(a) Using backward induction, calculate the price of a 6-month (T =

0.5) Bermudan put option with K = 100 and monthly exercise dates.
(b) Calculate the prices of 1m, 2m, ..., 6m European put options with

K = 100 (six prices).
(c) Is the Bermudan put the sum of the above six European puts? Is it

the maximum of the above six European puts?
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(d) Using backward induction, calculate the price of a 6-month Bermu-
dan call option with K = 100 and monthly exercise dates and com-
pare it to the price of a 6-month European call option with K = 100.

10. Confirm that the call Formula 6.6 is a solution to the BSM PDE.
11. Show that the European call and put formulas are convex functions of

the underlying asset price.
12. Let the volatility 𝜎 be nonconstant and a function of the underlying asset,

𝜎(A(t)). Use the chain rule to compute the smile-adjusted delta of a call
option.

13. A chooser option allows the owner to decide on T1 whether to own a
European-style K-strike call or put option with expiry T2 > T1.
(a) At T1, the payoff of the chooser option is

max(C(T1,T2,K),P(T1,T2,K))

Provide a formula for the chooser option by using the put-call parity
at T1.

(b) Show that the chooser option becomes a straddle when T1 = T2.
(c) Let A(0) = 100, r = 4%, 𝜎 = 12%, and price a 6-month final expiry

(T2 = 0.5) ATMF (K = FA(0,0.5)) chooser option where the option
holder chooses the option type in three months (T1 = 0.25).

PYTHON PROJECTS

1. Install numpy, scipy, and matplotlib packages.

pip install numpy
pip install scipy
pip install matplotlib
import math
import scipy.stats
import numpy as np
import matplotlib.pyplot as plt

2. BSM formulas.

def BSM(init_value, r, texp, sigma, K, call_put):
df = math.exp(-r*texp)
F = init_value * math.exp(r*texp)
st = sigma * math.sqrt(texp)
d1 = math.log(F/K) / st + .5 * st
# calculate d2
call = df * ( F * scipy.stats.norm.cdf(d1,0,1) - K * ...
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if call_put == 'call':
res = call
elif call_put == 'put':
res = call + K * df - init_value
else
res = 0.0
return res

3. CRR model for calls, puts.

def CRR_model(init_value, r, texp, num_steps, sigma, K, call_put):
dt = exp_time / num_steps
u = math.exp(sigma * math.sqrt(dt))
# caclulate d, p, df (discount factor)
...
rng = np.arange(0,num_steps+1)
final_value = init_value * (u**rng) * (d**np.flip(rng))
bin_pmf = scipy.stats.binom.pmf(rng)
if call_put == 'call':
option_payoff = np.maximum(0,final_value - K)
...

option_value = df * np.sum(option_payoff * pmf)
return option_value

4. Investigate convergence of CRR model to the BSM formulas (see
Figure 6.14).

def CRR_convergence(init_value, r, texp, sigma, K, call_put,
max_steps):

bsm = np.full(max_steps, BSM(...))
crr = np.empty(0)
for n in np.arange(1,max_steps):
crr.append(crr, CRR_model(...))

plt.plot(crr,'k')
plt.plot(bsm,'k-',linewidth=0.5)

# Test convergence
CRR_convergence(100, 0.04, 1, 0.12, 100, 'call', 100)

5. Create a CRR binomial tree and implement the backward induction
algorithm.

def CRR_tree(init_value, r, texp, num_steps, sigma):
# calculate u, d
tree = np.zeros(num_steps + 1, num_steps + 1)
tree[0,0] = init_value
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FIGURE 6.14 Convergence of CRR model to BSM Formula.

for t in np.arange(0, num_steps):
for s in np.arange(0, t+1):

tree[t+1,s] = tree[t,s] * u
tree[t+1,s+1] = tree[t,s] * d

return tree

6. Implement backward induction algorithm.

def CRR_BI(init_value, r, texp, num_steps, sigma, K, call_put):
# calculate dt, u, d, p
df = math.exp(-r*dt) # 1-period discount factor
tree = CRR_tree(...)
# Immediate exercise values
exer_value = np.zeros(np.shape(tree))
if call_put == 'call':

exer_value = np.maximum(tree-K)
....

option_value = exer_value
for t in np.flip(np.arange(0,num_steps)):
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FIGURE 6.15 Convergence of backward induction model to the American option.

for s in np.arange(0,t+1):
hold_value = df * (p * option_value[t+1,s] + ...)
option_value[t,s] = max(exer_value[t,s], hold_value)

return option_value[0,0]

7. Show convergence of Bermudan options to American options (see
Figure 6.15).

def CRR_American(init_value, r, texp, sigma, K, call_put,
max_steps):

american = np.empty(0)
for n in np.arange(1,max_steps):

american = np.append(american, CRR_BI(...))

# plot it

# Test convergence
CRR_American(100, 0.04, 0.5, 0.12, 100, 'put', 100)

8. Monte Carlo simulation of Brownian motion: A common numerical
method to generate sample paths of a Brownian motion with drift 𝜇

and diffusion coefficient 𝜎 is to use the Euler approximation, B(0) = 0

B(t + Δt) = B(t) + 𝜇Δt + 𝜎
√
ΔtN(0,1)
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where N(0,1) is a sample draw from a standard normal distribution.
Generate num_paths paths of a Brownian motion for n time-steps

B = [B(0) = 0,B(dt),B(2dt), . . . ,B(ndt)]

def generate_normals(num_paths, num_steps):
std_normals = np.random.normal(0,1,(num_paths,num_steps))
return std_normals

def generate_increments(texp, num_steps, mu, sigma, num_paths):
# Generate standard normals
...
dt = texp / num_steps
return mu * dt + sigma * math.sqrt(dt) * std_normals

def generate_BM(texp, num_steps, mu, sigma, num_paths):
# X is the num_paths x num_steps increment matrix
...
BM = np.zeros(numPaths, num_steps + 1)
for t in range(0, num_steps):

BM[:,t+1] = BM[:,t] + X[:,t]

return BM

9. Generate prices for an asset starting with A(0) following a geometric
Brownian motion in a risk-neutral setting

def generate_asset(init_value, r, texp, num_steps, sigma,
num_paths):

mu = r - 1/2 * math.pow(sigma, 2)
# Generate BM
...
return init_value * np.exp(BM)

10. Graph 500 paths of a 1-year monthly simulation of an asset with A(0) =
100 that follows a geometric Brownian motion in a risk-neutral setting
with r = 4%, 𝜎 = 10%

# Generate asset prices
...
for i in range(0, num_paths):

plt.plot(asset_prices[i])

plt.show()
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11. Using the same parameters as above, price a 1-year 105-strike European
call option with 1000 simulated paths, and repeat the pricing for 10
simulation runs. Report the statistics of the simulation runs: average,
standard deviation, minimum, maximum.

def price:call(init_value, r, texp, num_steps, sigma, K,
num_paths):

# Generate asset prices
...
asset_final_value = asset.prices[:,num_steps]
option_payoff = np.maximum(0, asset_final_value - K)
df = math.exp(-r * texp)
option_value = df * np.average(option_payoff)

return option_value

def run_simulations(num_sims):
sims = np.zeros(num_sims)
for i in range(0, num_sims):
sims[i] = price:call(100, 0.04, 1, 12, 0.10, 105, 1000)

print(np.average(sims), np.std(sims), np.amin(sims), ...)

12. Repeat the above step using antithetic variance reduction: generate
num_paths/2 standard normals and set the next num_paths/2
as their negative to generate the simulated BM. To see if there is a
reduction in variance, fix the seed of the random number generator, say
np.random.seed(2021), and compare the standard deviation of the
10 simulation runs with and without antithetic variables.

def generate_increments(texp, num_steps, mu, sigma, num_paths):
# Generate num_paths/2 (num_paths is even) standard normals
normals = generate_normals(num_paths//2, num_steps)
# Generate the other half as the negative, and stack them
std_normals = np.vstack((normals, -normals))
# Continue as before
return mu * dt + sigma * math.sqrt(dt) * std_normals

13. Add a 120 knock-out feature: the option expires worthless if at any
month before expiration the underlying asset’s value exceeds 120. Does
this feature reduce the cost of the call option?

def KO_call(init_value, r, texp, num_steps, sigma, K, KO,
num_paths):

# Generate asset prices
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TABLE 6.5 10 x 1000-path simulation runs, random.seed(2021).

Average Antithetic Antithetic

Price StdDev Average StdDev

Call (BSM) $3.579

Call (Simulation) $3.591 $0.241 $3.543 $0.115

KO Call (Simulation) $1.952 $0.125 $1.933 $0.080

KO Call (Control Variate) $1.941 $1.969

# Keep track of whether the option is not knocked out
(alive)

alive = np.ones(num_paths)
for t in range(1,num_steps+1):
alive = alive * (asset_prices:,t] <= KO)
final_value = asset.prices[:,num_steps]
option_payoff = alive * np.maximum(0, final_value - K)
# proceed as before
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CHAPTER 7
Interest Rate Derivatives

In the previous chapters, we made the simplifying assumption that inter-
est rates are deterministic and can be represented by a single constant

quantity, r. In reality, interest rates for different maturities (terms) are dif-
ferent, giving rise to the term structure of interest rates. For example, a
3-month deposit earns a different interest rate than a 6-month deposit, with
the 6-month interest rate typically higher.

7.1 TERM STRUCTURE OF INTEREST RATES

There are a variety of equivalent ways to represent the term structure, among
them the discount factor curve, the zero curve, and the forward rate curve
(see Figure 7.1). Starting with the market prices of actively traded instru-
ments, we can use the bootstrap method introduced in Section 2.7 to extract
the discount factor curve.

7.1.1 Zero Curve

Once we have extracted the discount factor curve, D(T),T ≥ 0, we can
price any fixed income instrument and extract any spot or forward rates.
For example, we can compute the zero-coupon curve, which is the yield of
zero-coupon bonds versus their maturity. We can express the yields using
any quote convention, for example, with semiannual compounding, we
have

(0 ≤ T) 1
(1 + y(T)∕2)2T

= D(T)

187
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FIGURE 7.1 Forward-rate, zero-coupon, and discount-factor curves.

while continuous compounding gives

(0 ≤ T) e−Ty(T) = D(T)

(0 < T) y(T) = − 1
T

ln D(T)

Note that the discount factor curve and the zero-coupon curve are inter-
changeable: if we know D(T) for all T, we have y(T) for all T, and vice
versa.

7.1.2 Forward Rate Curve

A more common way to represent the discount curve is via simple (add-on)
forward rates. Recall from Section 4.5 that the simple forward rate,
f ([T1,T2]), that can be locked today for a forward deposit period, [T1,T2],
and can be derived via the following arbitrage argument

FV(T1) × [1 + f ([T1,T2]) × (T2 − T1)] = FV(T2)
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leading to

(0 ≤ T1 < T2) f ([T1,T2]) =
1

T2 − T1

(
D(T1)
D(T2)

− 1
)

(7.1)

D(T2) =
D(T1)

1 + f ([T1,T2]) × (T2 − T1)
(7.2)

Given a series of consecutive forward rates f ([Ti,Ti+1]),0 = T0 <

T1 < . . . , starting with D(T0 = 0) = 1, one can use Formula 7.2 recursively
to solve for any discount factor

D(Tn) =
1

1 + f ([0,T1]) × T1
× . . . × 1

1 + f ([Tn−1,Tn]) × (Tn − Tn−1)
(7.3)

7.2 INTEREST RATE SWAPS

An interest rate swap is a contract between two counterparties to period-
ically exchange interest rate payments based on a notional (hypothetical)
principal for the term of the swap. In a standard fixed-for-floating inter-
est rate swap, the interest payments of a fixed-rate loan versus those of a
floating-rate loan are exchanged. The floating rate is periodically reset to
a short-term interest rate benchmark, traditionally the 3-month rate in the
United States. For USD swaps, the fixed-interest payments are semiannual,
while the floating-interest payments are reset and paid quarterly. Specifically,
for each quarterly calculation period, the 3-month rate is observed at the
beginning, accrued for the length of the 3-month calculation period (cal-
culated Act∕360 ≈ 1∕4), and paid at the end of the calculation period (see
Figure 7.2).

Interest rate swaps can be used to hedge interest rate risk and for
asset-liability management. For example, a commercial bank typically
takes in short-term deposits from individuals and businesses in the form of
checking, savings, money-market, and Certificate of Deposit (CD) accounts
and provides long-term home mortgage and commercial loans to them. This
results in an asset-liability mismatch: the bank’s revenue is fixed-interest
income received from long-term loans, while its cost is due to variable
interest paid on short-term deposits. An interest rate swap agreement
allowing the bank to periodically pay a fixed interest versus receiving a
floating interest can alleviate this mismatch.

Tables 7.1 and 7.2 show the cash flows of a 1-year swap with a semian-
nual fixed rate of 4% p.a. if today’s 3-month interest rate is 3.5% and future
3-month interest rates turn out to be 3.75%, 4%, and 4.25% in 3, 6, and
9 months, respectively.
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FIGURE 7.2 Cash flows of a 1-year USD fixed versus floating interest rate swap.

TABLE 7.1 Fixed leg’s cash flows of a $100M 1-year 4% fixed versus
floating swap.

Calc Fixed Accrual Cash Pay
Period Notional Rate (years) Flow Date

[0m,6m] 100,000,000 4% 1/2 2,000,000 6m
[6m,1y] 100,000,000 4% 1/2 2,000,000 1y

TABLE 7.2 Floating leg’s cash flows of a $100M 1-year 4% fixed versus
floating swap.

Calc Floating Accrual Cash Pay
Period Notional Rate (years) Flow Date

[0m,3m] 100,000,000 3.5% 1/4 875,000 3m
[3m,6m] 100,000,000 3.75% 1/4 937,500 6m
[6m,9m] 100,000,000 4% 1/4 1,000,000 9m
[9m,1y] 100,000,000 4.25% 1/4 1,062,500 1y

7.2.1 Swap Valuation

The stream of fixed and floating interest cash flows are respectively known
as the fixed and floating legs. The fixed leg can be valued by computing
the present value of its known interest payments. For the 1-year swap in
Figure 7.2, it is C∕2[D(6m) + D(1y)] for unit notional.



Trim Size: 6in x 9in Sadr838401 c07.tex V1 - 03/18/2022 3:34pm Page 191�

� �

�

Interest Rate Derivatives 191

For the floating leg, the cash flows depend on the future floating interest
rates observed at the beginning of each calculation period. If the term of
the floating interest rate matches the length of the calculation period, i.e.,
3-month rate accrued for 3 months, then these unknown cash flows can be
replicated by a portfolio of two zero-coupon bonds as follows.

For a given calculation period, [Ti,Ti+1], a portfolio consisting of a
long position in a Ti-maturity zero-coupon bond and a short position in
a Ti+1-maturity zero-coupon bond will ensure that one owns unit currency
at Ti and owes unit currency at Ti+1. At Ti, the unit currency from the matur-
ing zero-coupon bond can be invested at the prevailing interest rate for the
calculation period, r(Ti), to end up with

1 + r(Ti) × (Ti+1 − Ti)

at Ti+1. At Ti + 1 the short position in the maturing Ti+1 zero-coupon
bond requires payment of unit currency, leaving r(Ti) × (Ti+1 − Ti), which is
exactly the cash flow of the floating leg for that calculation period. Today’s
value of the floating leg’s cash flow is, therefore, today’s value of being long
a Ti zero-coupon bond and short a Ti+1 zero-coupon bond

D(Ti) − D(Ti+1) (7.4)

This replication argument applies to any of the floating leg’s cash flows
and today’s value of the floating leg of a swap with n calculation periods and
floating payments is

Value of Floating Leg =
n−1∑

i=0

(D(Ti) − D(Ti+1)) = D(T0) − D(Tn)

Combining the values of the fixed and floating legs, the value of a swap to
the receiver of the periodic fixed-interest payments of C∕m at T1, . . . ,Tn is

Swap Value = C
m

n∑

i=1

D(Ti) − [D(T0) − D(Tn)] (7.5)

Depending on the discount factor curve and the fixed rate C, the value in
Formula 7.5 can be positive, negative, or zero. The fixed rate C that makes
today’s value of the swap zero is called the par swap rate

C =
D(T0) − D(Tn)
1∕m

∑n
i=1 D(Ti)
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TABLE 7.3 Discount factor curve, forward 6-month rate curve,
and swap rates with semiannual fixed rate.

T (years) D(T) f ([T,T + 6m]) S(T)

0 1 4.082%
0.5 0.98 4.167% 4.082%
1 0.96 4.255% 4.124%
1.5 0.94 4.348% 4.167%
2 0.92 4.444% 4.211%
2.5 0.90 4.545% 4.255%
3 0.88 4.301%

and the graph of par swap rate as a function of the swap maturity is known
as the par swap curve.

A swap can start today, T0 = 0, or at a future date, T0 > 0. For forward
swaps starting at T0 > 0, the fixed rate that would make today’s value of the
swap zero is called the forward swap rate.

EXAMPLE 1

Using the discount factors in Table 7.3, the 2-year par swap rate with
semiannual (m = 2) payments on the fixed leg is

S2 = 1 − 0.92
1∕2(0.98 + 0.96 + 0.94 + 0.92)

= 4.211%

while the 2-year par swap rate, 1-year forward is

F1y,2y = 0.96 − 0.88
1∕2(0.94 + 0.92 + 0.90 + 0.88)

= 4.396%

The value to the receiver of the fixed rate in a $1M 6-month forward
2-year swap with a semiannual fixed rate of 4% p.a. is

$1,000,000 ×
[

0.04
2

(0.96 + 0.94 + 0.92 + 0.90) − (0.98 − 0.90)
]

= −$5,600

The value to the payer of the fixed rate is +$5,600.
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7.2.2 Swap = Bone − 100%

By adding a hypothetical final principal payment to each leg, the cash flows
of the fixed leg become identical to those of a fixed-rate bond paying a
coupon rate of C, while the floating leg’s cash flows match cash flows of
a flating-rate note (FRN), a bond whose coupon is reset periodically to the
prevailing short-term interest rate.

The value of the fixed leg augmented by the principal payment is the
same as a regular bond, while the value of the augmented floating leg is
D(T0). For a spot starting (T0 = 0) swap, the augmented floating leg is
worth D(0) = 1. Receiving the fixed rate C in a swap is, therefore, eco-
nomically equivalent to paying par (100%) for a bond with coupon rate C:
Swap = Bond − 100%.

Since the second term is constant, the sensitivities of a swap to interest
rates such as PV01, convexity is similar to those of a bond.

7.2.3 Discounting the Forwards

The replication argument for the floating payments holds as long as the tenor
of the floating rate matches the calculation period and the floating rate is
reflective of one’s funding cost and can be used to discount the cash flows.
The value of the replicating portfolio, Formula 7.4 can be related to the
forward rate as follows

D(Ti) − D(Ti+1) =
D(Ti) − D(Ti+1)

D(Ti+1)
× D(Ti+1)

=
(

D(Ti)
D(Ti+1)

− 1
)/

(Ti+1 − Ti) × (Ti+1 − Ti) × D(Ti+1)

= f ([T1,T2]) × (Ti+1 − Ti) × D(Ti+1)

showing that one can value each cash flow of the floating leg by setting the
unknown future interest rate to the forward rate, accruing it for the length
of the calculation period, (Ti+1 − Ti), and discounting this projected cash
flow from the payment date Ti+1. Note that the actual cash flow will depend
on the future setting of the floating rate, but for the purpose of valuation,
one can use the forward rate and discount the resulting cash flow, leading to
discounting the forward.

7.2.4 Swap Rate as Average Forward Rate

Since the floating leg value can be written as a sum of discounted forward
rates, the par swap rate can be considered as a weighted average of forward
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rates if the fixed and floating leg have the same payment frequency. Specif-
ically, for an N-year swap with m payments per year starting on T0 with
payment dates {T1, . . . ,TNm}, we have

S =
D(T0) − D(TNm)

1∕m
∑Nm

i=1 D(Ti)

=
1∕m

∑Nm
i=1 f ([Ti−1,Ti])D(Ti)

1∕m
∑Nm

i=1 D(Ti)

=
Nm∑

i=1

wi f ([Ti−1,Ti])

where

wi =
D(Ti)

∑Nm
i=1 D(Ti)

7.3 INTEREST RATE DERIVATIVES

The earlier replication argument to value a swap breaks down when the
floating interest rate’s term does not match the length of the calculation
period. For example, the floating rate could be the 6-month rate, or the
5-year par swap rate, reset and paid quarterly. For these swap variants and
fixed income and interest rate contingent claims, such as bond options,
callable bonds, and European-style options to enter into a swap (swaptions),
one needs to model the evolution of the underlying assets in a risk-neutral
arbitrage-free setting and apply the risk-neutral valuation framework.
As these models can become quite elaborate, they are mainly used for
complicated interest rate derivatives and simpler techniques and heuristics
are used for simpler products.

7.3.1 Black’s Normal Model

The log normal dynamics for asset prices is the result of modeling the asset’s
return as a Brownian motion with drift. As interest rates themselves are mea-
sures of return, interest rate products and their derivatives are modeled via
a Brownian motion leading to normal dynamics. Specifically, the underlying
asset’s absolute change is modeled via a Brownian motion leading to

A(t) − A(0) ∼ N(𝜇t, 𝜎2
Nt)
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where 𝜎N is known as the Normalized, or Normal volatility. In a risk-neutral
world, we must have

E[A(t)] = FA(0, t)

leading to the risk-neutral distribution

A(t) ∼ N(FA(0, t)), 𝜎2
Nt)

Today’s value of a European call can be computed as

C(0) = D(T)
∫

∞

−∞
max(0,x − K)fA(T)(x)dx

where

fA(T)(x) =
1

√

2𝜋𝜎2
NT

e
− (x−FA(0,T))2

2𝜎2
N

T

To evaluate the integral, and using the shorthand F = FA(0,T), f (x) =
fA(T)(x) and

d = F − K

𝜎N

√
T

we observe

∫

∞

−∞
max(0,x − K)f (x)dx =

∫

∞

K
(x − K)f (x)dx

=
∫

∞

K
(x − F)f (x)dx +

∫

∞

K
(F − K)f (x)dx

The first integral is evaluated as

∫

∞

K
(x − F)f (x)dx =

−𝜎N

√
T

√
2𝜋 ∫

∞

K

d
dx

e
− (x−F)2

2𝜎2
N

T dx

= 𝜎N

√
T

1
√

2𝜋
e−d2∕2

= 𝜎N

√
TN′(d)
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The second integral is

(F − K)
∫

∞

K
f (x)dx = (F − K)P[N(F, 𝜎2

NT) ≥ K]

= (F − K)N(d)

Putting the above two results together leads to Black’s Normal call formula

C(0) = D(T)𝜎N

√
T[N′(d) + dN(d)], d =

FA(0,T) − K

𝜎N

√
T

Using put-call parity, the formula for a put is

P(0) = D(T)𝜎N

√
T[N′(d) − dN(−d)], d =

FA(0,T) − K

𝜎N

√
T

The above two formulas are widely used for European-style interest rate
derivatives.

7.3.2 Caps and Floors

An interest rate cap is a series of periodic cash flows providing protection
against rising rates. For example, a 1-year quarterly cap on a 3-month inter-
est rate with strike K is a portfolio of four caplets based on four calculation
periods, where the payoff of each caplet for the calculation period [Ti,Ti+1] is

Notional × max(0, r3m(Ti) − K) × (Ti+1 − Ti)

paid at the Ti+1 (see Table 7.4). Today’s value of each caplet is computed via
Black’s Normalized call formula

E[max(0, r3m(Ti) − K)] = 𝜎N

√
T[N′(d) + dN(d)], d =

f ([Ti,Ti+1])

𝜎N

√
Ti

where f ([Ti,Ti+1]) is the simple (add-on) forward rate for [Ti,Ti+1]

f ([Ti,Ti+1]) =
(

D(Ti)
D(Ti+1)

− 1
)/

(Ti+1 − Ti)
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Similarly, a floor is a collection of floorlets, where the payoff of each floorlet
for the calculation period [Ti,Ti+1] is

Notional × max(0, r3m(Ti) − K) × (Ti+1 − Ti)

paid at the Ti+1. Each floorlet is computed via Black’s Normal put formula

E[max(0,K − r3m(Ti))] = 𝜎N

√
T[N′(d) − dN(−d)], d =

f ([Ti,Ti+1])

𝜎N

√
Ti

EXAMPLE 2

Using linear interpolation in the discount factors in Table 7.3, the value
of a $1M 1-year forward start 1-year quarterly cap on 3-month rates
using 𝜎N = 0.80% (80 bps/annum) as shown in Table 7.4 is $4,930.97.
A similar calculation based on Black’s Normal put formulas shows the
value of a 1-year forward 1-year quarterly 4% floor to be $2,330.97.

TABLE 7.4 1-year forward start 1-year quarterly cap with strike K = 4%,
𝜎N = 0.80%.

Period Notional x Today’s
[Ti,Ti+1] (Ti+1 − Ti) f ([Ti,Ti+1]) d Caplet DF(Ti+1) Value

[1y,1y3m] $250,000 4.211% 0.263158 0.004354 0.95 $1,034.09
[1y3m,1y6m] $250,000 4.255% 0.285455 0.004989 0.94 $1,172.47
[1y6m,1y9m] $250,000 4.301% 0.307284 0.005597 0.93 $1,301.37
[1y9m,2y] $250,000 4.348% 0.328665 0.006187 0.92 $1,423.04

$4,930.97

7.3.3 European Swaptions

A Te-expiry into N-year European swaption is the option to enter into an
N-year swap at the expiration date Te. A receiver swaption with strike K is
the option to enter into a swap where one receives the fixed rate K. Similarly,
a payer swaption with strike K is the option to enter into a swap where one
pays the fixed rate K.
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To value a payer swaption with strike K, we observe that at expiration,
the owner will exercise the option only if the N-year par swap rate, S(Te), is
above K. In this case, it is advantageous to pay a below-market fixed rate K
for the next N years in exchange for receiving the floating rates. Since one
can enter into an offsetting swap where one receives the par swap rate S(Te)
for zero cost, the combination of the two swaps cancels out the floating legs
resulting in a series of net periodic cash flows of size

1
m
(S(Te) − K)

for the next N years, where m is fixed leg’s payment frequency (m = 2 for
semiannual swaps). These net payments will only happen if the swaption is
exercised, S(Te) > K. The payoff of the payer swaption is then the series of
periodic cash flows of size

1
m

max(0, S(Te) − K)

at T1,T2, . . . ,TNm, where Ti is the payment date of the ith cash flow of the
fixed leg (see Figure 7.3).

Today’s value of the payer swaption is computed as

E[max(0, S(Te) − K)] × 1
m

Nm∑

i=1

D(Ti)

with the expectation calculated via Black’s Normal call formula. Similarly,
a receiver swaption is calculated as

E[max(0,K − S(Te))] ×
1
m

Nm∑

i=1

D(Ti)

using Black’s Normal put formula. Notice that the term

A = 1
m

Nm∑

i=1

D(Ti)

…

Te T1

m
1

T2 TNm

m

C
max(0, S(Te) – K )m

1C =
C C

1

FIGURE 7.3 Payoff of a Te into N-year payer swaption.
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is the value of a N-year forward annuity starting at Te paying unit cash flow
per year, m times per year.

EXAMPLE 3

Let the Normalized volatility of a 1-year into 2-year forward swap
rate be given as 1.20% per annum, 𝜎N = 1.20%. Using the discount
factors in Table 7.3, we compute the premium for a $1M 1-year expiry
into a 2-year semiannual (m = 2) payer swaption with strike K = 4%
as follows. We first calculate the forward 1 year into a 2-year par swap
rate and the annuity value

F =
D(1y) − D(3y)

1∕2[D(1.5y) + D(2y) + D(2.5y) + D(3y)]
= 4.396%

A = 1
m

Nm∑

i=1

D(Ti) =
1
2
(0.94 + 0.92 + 0.90 + 0.88) = 1.82

Using Black’s Normal call formula, we have

d = F − K

𝜎N

√
Te

= 0.04396 − 0.04

0.012 ×
√

1
= 0.32967

E[max(0, S(Te) − K)] = (0.012)
√

1

[

1
√

2𝜋
e−d2∕2 + dN(d)

]

= 0.007023

and the premium is calculated as

$1,000,000 × 0.007023 × 1.82 = $12,782.13

The value of a 1-year into 2-year receiver swaption with strike K = 4%
is calculated using Black’s Normal put formula

E[max(0,K−S(Te))] = (0.012)
√

1

[

1
√

2𝜋
e−d2∕2 − dN(−d)

]

= 0.003067

with the premium given as

$1,000,000 × 0.003067 × 1.82 = $5,582.13
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7.3.4 Constant Maturity Swaps

In a swap where the floating index is the N-year par swap rate, the swap is
known as a constant maturity swap (CMS). For example, a 2-year fixed
for floating swap of a 5-year CMS rate would require the periodic pay-
ments of a fixed rate in exchange for periodic, say quarterly, payments of the
5-year CMS rate for two years. While the replication argument for the float-
ing payments is no longer applicable—the length of the calculation period’s
accrual period (1/4 for quarterly) is different than the tenor of the index
(5 years)—one might still value the swap by discounting the forward CMS
rate with an appropriate adjustment.

The adjustment is based on the following heuristic argument. By recall-
ing that swap = bond − 100%, we start with the bond price-yield formula
and Taylor-expand it around the forward CMS rate F

P(y) − P(F) = P′(F)(y − F) + 1∕2P′′(y − F)2

Taking expected values of both sides in a risk-neutral setting where forward
prices are expected prices, E[P(y)] = P(F), we arrive at the approximation

0 = (E[y] − F)P′(F) + 1∕2P′′E[(y − F)]2

Using the approximation

E[(y − F)2] ≈ 𝜎2
NT

we arrive at the following CMS convexity adjustment

E[y] − F = −1
2

P′′(F)
P′(F)

𝜎2
NT

[
1
F
−

N∕m

(1 + F∕m)N+1 − (1 + F∕m)

]

𝜎2
NT (7.6)

where we have used Formulas 2.8 and 2.12 for a par (C = y = F) bond.
CMS swaps are typically valued by discounting the forward CMS rate

adjusted by Formula 7.6. Similarly, caps and floors on CMS rates are priced
via Black’s Normal formula with the forward rate adjusted by Formula 7.6.

7.4 INTEREST RATE MODELS

While Black’s Normal model is widely used to price European-style options
on interest rates, its use is not entirely justified as it conflates forward rates
and forward prices. The risk-neutral valuation framework was established
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by replicating options on tradeable assets via self-financing replicating port-
folios. In fixed income and for interest rates, the tradeable assets are loans
and bonds, not interest rates or yields. The latter are simply measures of rate
of return on traded assets and are not directly traded.

To price interest rate derivatives in a consistent manner in the
risk-neutral valuation framework, we need to start with traded assets.
The fundamental underlying assets in fixed income are unit cash flows at
future dates T, that is, T-maturity zero-coupon bonds. The t-price of a unit
cash flow at T > t is the discount factor D(t,T) with D(t, t) = D(T,T) = 1.
Recall that in a risk-neutral world we must have

(0 ≤ t ≤ T) D(t,T, 𝜔)
M(t, 𝜔)

= Et

[
D(T,T, 𝜔)
M(T, 𝜔)

]

= Et

[
1

M(T, 𝜔)

]

(7.7)

where M(t, 𝜔) is the t-value of a money market account initiated with unit
currency along the random sample path 𝜔.

7.4.1 Money Market Account, Short Rate

Let 0 = T0 < T1 < . . . be a discretization of time. Given a forward rate
curve, {f ([Ti,Ti+1])}i≥0, the first rate f ([T0,T1]) is the interest rate for a
loan/deposit starting today T0 = 0 for a short-term deposit [0,T1] and is
known as the short rate.

The short rate is the interest rate in a money market account, M(T),
where the interest rate periodically (daily, weekly, or monthly) resets to the
prevailing interest rate. Setting ΔTi = Ti+1 − Ti, if we use simple (add-on)
short rates, we have

M(Tn, 𝜔) = 1 × (1 + r(0)ΔT1) × . . . × (1 + r(Tn−1, 𝜔)ΔTN)

where we have introduced the term 𝜔 to emphasize that future short rates
are random and unknown.

Focusing on today, since M(0) = 1, and D(Tn,Tn) = 1, we have

D(0,Tn)
M(0)

= E0

[
D(Tn,Tn)
M(Tn, 𝜔)

]

⇒ D(0,Tn) = E0

[
n−1∏

i=0

1
1 + r(Ti, 𝜔)ΔTi

]

(7.8)

which is the arbitrage-free martingale condition in a risk-neutral world. The
term inside the bracket in Formula 7.8 is the stochastic version of the dis-
count factor showing that for each random sample path, unit currency at Tn
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gets discounted back to today along the series of consecutive random short
rates along that path.

The notation simplifies if we use continuously compounded short rates

M(Tn, 𝜔) = e
∑n−1

i=0 r(Ti,𝜔)ΔTi

D(0,Tn) = E0[e−
∑n−1

i=0 r(Ti,𝜔)ΔTi] (7.9)

As ΔTi → 0, we arrive at the continuous time versions of the above formulas

M(T) = e∫
T

0 r(t,𝜔)dt, D(t,T, 𝜔) = Et[e− ∫ T
t r(u,𝜔)du]

reducing to M(T) = erT ,D(t,T) = e−r(T−t) for constant interest rates.

7.4.2 Short Rate Models

Applying the risk-neutral valuation framework, if we posit a process for
the evolution of the short rates satisfying Formula 7.8 or 7.9, then today’s
price of any European-style interest rate derivative with payoff C(TN, 𝜔) for
expiration date TN is

C(0) = E0

[
C(TN, 𝜔)
M(TN, 𝜔)

]

= E0

[(
N−1∏

i=0

1
1 + r(Ti, 𝜔)ΔTi

)

C(TN, 𝜔)

]

(7.10)

or

C(0) = E0[e−
∑N−1

i=0 r(Ti,𝜔)ΔTiC(TN, 𝜔)] (7.11)

if we use continuous compounding. The term in the parentheses is the path
discounting of the payoff along sample path 𝜔, and the value of an inter-
est rate derivative is the risk-neutral expected value of its path-discounted
payoff.

7.4.3 Mean Reversion, Vasicek and Hull-White Models

Interest rates as opposed to stock prices are range-bound and exhibit mean
reversion. A simple random process for r(t, 𝜔) that incorporates mean rever-
sion is an adaptation of the Ornstein-Uhlenbeck process proposed by Vasicek
(Vasicek, 1977).

dr(t, 𝜔) = a × [b − r(t, 𝜔)]dt + 𝜎dB(t, 𝜔)

for positive a > 0, b > 0 known as the mean reversion speed and level,
respectively.
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When r(t, 𝜔) > b, the term in the bracket is negative and is multiplied by
a positive mean reversion speed a, therefore, the drift term in the diffusion is
negative and there is downward pressure on r(t, 𝜔). The larger the difference
between r(t, 𝜔) and the mean reversion level b, the larger the downward
pressure. Similarly, when r(t, 𝜔) < b, the drift term is positive and there is
upward pressure on r(t, 𝜔). The lower the r(t, 𝜔), the larger the difference
between r(t) and b, and the upward pressure. When r(t, 𝜔) = b, then the
drift term vanishes and r(t, 𝜔) follows a Brownian motion, i.e., it has zero
expected change and meanders around b.

The mean-reverting short rate model proposed by Vasicek was extended
in a series of papers by Hull and White, (Hull and White, 1993) culminating
in the Hull-White (HW) model with time-dependent mean reversion speeds,
levels, and volatilities, replacing a,b, and 𝜎 from constants to determinis-
tic functions of time, a(t),b(t), and 𝜎(t). These models result in Gaussian
short rates allowing for the short rate to go negative. If the short rate is a
continuously compounding rate, then zero-coupon bond prices, which are
equivalent to discount factors, are lognormal

D(t,T, 𝜔) = Et

[

e− ∫ T
t r(u,𝜔)du

]

(7.12)

since for a Gaussian process r, the integral ∫ r(t, 𝜔)dt is conditionally Gaus-
sian (Karlin and Taylor, 1975).

It is possible to derive analytic expressions for the short rate and dis-
count factors. For the Vasicek model, we have

dr + ardt = abdt + 𝜎dB

Multiplying both sides by the integrating factor e∫ a = eat, we have

e∫ adr + ae∫ ardt = abe∫ adt + 𝜎e∫ adB

⇒ d(e∫ ar) = abe∫ a + 𝜎e∫ adB

⇒ r(T) = e−aT

[

r(0) +
∫

T

0
abeatdt +

∫

T

0
𝜎eatdB(t)

]

For any deterministic function f (t), the stochastic integral ∫ fdB is Gaussian

∫

t2

t1

f (t)dB(t) ∼ N
(

0,
∫

t2

t1

f 2(t)dt
)
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This can be understood by thinking of the integral as the limit of
∑

f (ti)[B(ti+1) − B(ti)]

and recalling that the increments of the Brownian motion are independent
and a [ti, ti+1] increment is an N(0, ti+1 − ti) random variable. We have

r(T) = r(0)e−aT + b(1 − e−aT) + N
(

0, 𝜎
2

2a
(1 − e−2aT)

)

showing that r is a Gaussian process. The zero-coupon bond prices or the dis-
count factors in Formula 7.12 can be evaluated (Mamon, 2004) to arrive at

D(t,T, r(t)) = eA(t,T)r(t) + B(t,T)

A(t,T) = e−a×(T−t) − 1
a

B(t,T) =
(

𝜎2

2a2
− b

)

[A(t,T) + (T − t)] − 𝜎2A2(t,T)
4a

(7.13)

7.4.4 Short Rate Lattice Model

While Formula 7.13 provides insight into the behavior of zero-coupon
bond prices and can be used to compute option prices on them, for more
common interest rate derivatives, one resorts to a discrete time computer
implementation of the model. Following the original papers by Hull-White,
the HW model is usually implemented as a trinomial lattice, and both
the probabilities and states have to be computed to jointly satisfy the
arbitrage-free constraint of Formula 7.8. Below are the typical computer
implementation steps.

1. Discretization. Discretize the HW process equation,

dr(t, 𝜔) = a(t)[b(t) − r(t, 𝜔)]dt + 𝜎(t)dB(t, 𝜔)

for lattice dates, 0 = t0 < t1 < . . . < tN+1, to arrive at discretized mean-
reversion speeds, levels, and local volatilities: ai = a(ti),bi = b(ti), 𝜎i =
𝜎(ti),Δti = ti+1 − ti,0 ≤ i < N. The mean reversion levels bi’s are used
to make the lattice arbitrage-free, while the mean reversion speeds and
local volatilities ai, 𝜎i are used to fit the model to the market prices of
actively traded interest rate derivative products such as cap/floors and
European swaptions.

2. Evolution. Starting from r0 = r(t0 = 0), let rij = r(ti, 𝜔j) denote the jth
state at the ith time ti. At each time ti, each node rij leads to three nodes
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rij

ri+1, j+1 = ri+1, j + Δ ri

ri+1, j ≈ aibiΔ ti + rij(1 – aiΔ ti)

ri+1, j–1 = ri+1, j – Δ ri

Δ ri = σi    3Δ ti
pu

pm

pd

ti ti+1

Δ ti

FIGURE 7.4 Typical implementation of the Hull-White model.

as shown in Figure 7.4, with the middle node ri+1,j chosen to ensure
that the lattice recombines by letting k be the closest integer to rij(1 −
aiΔti)∕𝜎i

√
3Δti, and setting

ri+1,j = aibiΔti + k𝜎i

√
3Δti.

The choice of spacing Δri = 𝜎i

√
3Δti is motivated by lattice stability

issues as Δti → 0, coming from insights of finite-difference disciplines.
With this choice, the transition probabilities defined as

pm =2
3
−

(rij(1 − aiΔti) − k𝜎i

√
3Δti)2

3𝜎2
i Δti

pu,d =
1 − pm

2
±

rij(1 − aiΔti) − k𝜎i

√
3Δti

2𝜎i

√
3Δti
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are all non-negative, and ensure that the process dynamics (local means
and volatilities) are respected.

3. Risk-neutral, Arbitrage-free. Solve for bi so that the arbitrage-free con-
dition in Formula 7.8 is satisfied for D(0, ti+1), i.e., recover today’s dis-
count factor curve, D(0, ⋅). This step is sometimes called inverting the
yield curve.

4. Calibration. Once an arbitrage-free lattice is constructed, tune the
parameters ai, 𝜎i and repeat the above steps to arrive at an arbitrage-free
lattice that recovers today’s discount factor curve and market prices of
a chosen set of interest rate derivative products such as cap/floors or
European swaptions.

5. DF Curve Extraction. Given a calibrated arbitrage-free lattice, starting
at the last node, recursively extract the discount factor curve at each
previous node via

D(t,T, 𝜔)
M(t, 𝜔)

= Et

[
D(T,T, 𝜔)
M(T, 𝜔)

]

⇒ D(t,T, 𝜔) = Et

[
M(t, 𝜔)
M(T, 𝜔)

]

which for the discretized process can be written

(0 ≤ i ≤ n) D(ti, tn, 𝜔) = Eti

[
n−1∏

j=i

1
1 + r(tj, 𝜔)Δtj

]

This means that at each node on the lattice, we can extract the
discount factor curve at that node by focusing on the sublattice starting
at that node and path-discounting future unit cash flows to that
node along the series of short rates that originate from the node (see
Figure 7.5).

6. Pricing. Equipped with the discount factor curve at each lattice node
in a calibrated arbitrage-free risk-neutral setting, price any interest
rate contingent claim by path-discounting its cash flows to today using
Formula 7.11.

7.4.5 Pure Securities

A (ti, j) pure security, also known as an Arrow-Debreu security, is a contin-
gent claim that has a unit payoff at the jth state at ti and 0 elsewhere. A
ti-maturity zero-coupon bond has a unit payoff at any state at ti and can
be considered as a portfolio of pure securities and its value today is simply
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r(t4, 7)

r(t3, 1)

FIGURE 7.5 Navigating the sublattice originating from each node to extract the dis-
count factor curve at the node.

the sum of the prices of these securities. Specifically let AD(ti, j) be today’s
(t0 = 0) price of a (ti, j) pure security. Then

D(0, ti) =
∑

j

AD(ti, j)

where j spans all the potential states at future time ti. Similarly, today’s price
of any contingent claim with payoff C(ti, j) at (ti, j) state is

C(0) =
∑

j

C(ti, j)AD(ti, j) (7.14)

Today’s price of a (ti, j) pure security is the expected path-discounted
of all paths leading to state j at ti. The collection of AD prices satisfy the



Trim Size: 6in x 9in Sadr838401 c07.tex V1 - 03/18/2022 3:34pm Page 208�

� �

�

208 MATHEMATICAL TECHNIQUES IN FINANCE

r(ti, jn)

r(ti+1, j)

…
AD(ti+1, j ) = ∑

k

AD(ti, jk)

1 + r(ti, jk)Δti

Δti
ti ti+1

pk
r(ti, j2)

r(ti, j1)

pn

p2

p1

FIGURE 7.6 Forward induction and pure security prices.

Green’s function and can be systematically calculated via the forward induc-
tion technique, (Jamshidian, 1991) as follows: AD(0,0) = 1

AD(ti+1, j) =
∑

k

AD(ti, jk)P[(ti, jk) → (ti+1, j)]D(ti, ti+1, jk)

where D(ti, ti+1, jk) is the 1-period discount factor at state (ti, jk) for ti+1 and
can be related to the simple (add-on) short rate r(ti, jk)

D(ti, ti+1, jk) =
1

1 + r(ti, jk)Δti

as shown in Figure 7.6.
The calculation and updating of AD(ti)’s at each step greatly simpli-

fies the yield curve inversion step during the construction of the lattice and
simplifies the pricing of contingent claims to the calculation of the sum in
Formula 7.14 instead of computing the expected path-discounted value of
the payoff in Formula 7.11.

7.5 BERMUDAN SWAPTIONS

A Bermudan swaption is Bermudan option to enter into a swap with a fixed
maturity date at one of a given set of exercise dates. For example, a 1-year
into 2-year Bermudan payer with semiannual exercise dates and fixed pay-
ments allows one to enter as a fixed-rate payer into a 2-year swap in 1 year, or
a 1.5-year swap in 1.5 years, or a 1-year swap in 2 years, or a 6-month swap
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(u, 4.25%, 0.4902)

(d, 3.75%, 0.4902)

(uu, 4.5%, 0.2400)

(ud, 4%, 0.4806)

(dd, 3.5%, 0.2406)

(uuu, 4.75%, 0.1174)

(uud, 4.25%, 0.3529)

(dud, 3.75%, 0.3538)

(ddd, 3.25%, 0.1182)

(uuuu, , 0.0573)

(uuud, , 0.2301)

(udud, , 0.3464)

(ddud, , 0.2318)

(dddd, , 0.0582)

(State, r6m, Arrow Debreu Price)

T0 = 0 T1 = 6m T2 = 1y T3 = 1.5y T4 = 2y

(0, 4%, 1.0)

p = 1/2

FIGURE 7.7 Two-year evolution of the 6-month rate.

TABLE 7.5 Discount factor curve at each node.

Tree Date State DF(T0) DF(T1) DF(T2) DF(T3) DF(T4)
T0 0 1 0.98039 0.96117 0.94233 0.92386

T1 = 6m u 1 0.97919 0.95882 0.93887

d 1 0.9816 0.96353 0.9458

T2 = 1y uu 1 0.978 0.95648

ud 1 0.98039 0.96117

dd 1 0.9828 0.9659

T3 = 1y6m uuu 1 0.9768

uud 1 0.97919

dud 1 0.98160

ddd 1 0.98401

in 2.5 years. The owner of the option can decide to exercise on any—but
only one—of the above exercise dates. Bermudan swaptions are typically
priced via backward induction in an interest rate lattice.
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EXAMPLE 4

Consider an arbitrage-free short rate tree model shown in Figure 7.7
with all transition probabilities set to 1/2, and with its extracted
discount factor curve at each node shown in Table 7.5. To price a $1M
6 month into 1.5-year Bermudan 4% p.a. fixed-rate payer swaption
with semiannual exercise dates, we evaluate the underlying swap
at each node as shown in Table 7.6. Starting with the last exercise
date T3 = 1.5y, we calculate the immediate exercise value, that is
max(0, Swap Value). We then step back and at each step and for each
node, calculate the higher of the immediate exercise value and the
discounted expected hold value until we arrive at today’s value of
$1,904.32.

A similar calculation shows the value of the 6 month into 1.5-year
Bermudan 4% receiver swaption with semiannual exercise dates to be
$1,918.61.

TABLE 7.6 Value of $1M 6 month into a 1.5-year Bermudan 4% p.a.
semiannual swaption with semiannual exercise dates.

Tree State Payer Bermudan Bermudan
Date swap payer swaption receiver swaption

T0 = 0 0 −14.29 1,904.32 1,918.61

T1 = 6m u 3,590.33 3,590.33 294.48

d −3,619.49 294.48 3,619.49

T2 = 1y uu 4,834.72 4,834.72 0

ud −1.47 600 601.47

dd −4,873.23 0 4,873.23

T3 = 1y6m uuu 3,663 3,663 0

uud 1,223.99 1,223.99 0

dud −1,226.99 0 1,226.99

ddd −3,690.04 0 3,690.04



Trim Size: 6in x 9in Sadr838401 c07.tex V1 - 03/18/2022 3:34pm Page 211�

� �

�

Interest Rate Derivatives 211

7.6 TERM STRUCTURE MODELS

The state variable in short rate models is the short rate r(t) and its evolution
from any node determines the discount curve at that node. For example, in
the HW model implementation the yield curve inversion step requires solving
for the mean reversion level b′

i s to recover today’s yield curve. Similarly, to
extract the DF curve at any future state, one needs to navigate the sublattice
spawned from that state. Short rate models, therefore, are implicitly evolving
the full term structure.

By selecting the full term structure in any of its equivalent
representations—discount factor curve, zero-coupon curve, forward
rate curve—as the state variables and evolving the full curve, one can
obviate the yield curve inversion and extraction steps. Term structure
models stating with the full yield curve, typically the forward rate curve, are
called full term structure models (Heath et al., 1992). Their implementation
is more technical and nuanced (Sadr, 2009), but they have the intuitive
appeal of directly representing the yield curve at each state (see Figure 7.8).

Note that when evolving the forward rate curve, the initial point of
the forward curve is the short rate, hence, a full term structure model is
an implicit short rate model, and vice versa.

FIGURE 7.8 Full term structure model.
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7.7 INTEREST RATE DERIVATIVES IN PRACTICE

In the United States, there is an active market for OTC forward rate agree-
ments (FRA’s) based on 3-month deposits. There are also actively traded
futures contracts based on short-term interest rates (STIR) and options on
futures contracts. The most common underlying rate has traditionally been
the 3-month Libor rate currently being replaced by SOFR (secured overnight
funding rate), serving as the index for popular and liquid Euro-dollar futures
contract series. Various expiry options on Euro-dollar futures contracts are
traded actively and used as benchmark instruments for calibration of interest
rate models.

Par swap rates for various benchmark maturities (2 year, 3 year, 5 year,
7 year, 10 year, 12 year, 15 year, 20 year, 25 year, and 30 year) are actively
quoted and traded. Given a series of par swap rates and cash and forward
rate agreements and futures contracts based on the same floating rate,
the swap market discount factor curve is extracted using the bootstrap
method. Starting with this discount factor curve, a short rate or a full
term structure model is constructed and calibrated to the liquid options
such as futures options and Europen-style swaptions. Once the model is
constructed, the price of more complicated interest rate derivative products
such as Bermudan cancellable swaps and swaps with exotic payoffs can be
computed.

7.7.1 Interest Rate Risk

For bonds, the single yield to maturity captures all the interest rate and dis-
counting information in the price-yield formula, and the interest rate risk is
captured by the PV01 dP∕dy. Interest rate derivatives, on the other hand,
depend on the full term structure and a variety of interest rates. A common
method to compute the interest rate risk of an interest rate derivative prod-
uct is the bump and revalue method: Starting with a set of liquid market
instruments as inputs, bootstrap the discount factor curve, build and cali-
brate any models (short rate or full term structure), and compute the price.
Next increase all the input rates used to bootstrap the discount factor curve
by 1 bp, create a new bootstrapped discount factor curve, a new short rate
or term structure model, and compute a new price. The difference between
the new bumped price and the original price is called the parallel PV01 of
the instrument and measures the sensitivity to the overall level of interest
rates. For a more detailed sensitivity analysis, one can do the same bump
and revalue process, but increase each input instrument’s rate one at a time
while holding other rates unchanged to come up with a vector of sensitivities.
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This vector is known as the bucketed PV01. Similar calculations can be done
for second-order sensitivities.

Another method to measure risk is to revalue the instrument for a given
interest rate shift scenario, for example, a 10 bp parallel shift, or a 100 bp
steepening of the yield curve. These shift scenarios are applied to the input
instruments, a new discount curve and interest rate model is created, and
the instrument repriced. One can either value the instrument, or compute
parallel or bucketed PV01 under the shift scenario, giving rise to scenario
value or scenario PV01.

7.7.2 Value at Risk (VaR)

Valuing a portfolio of interest rate sensitive products under a variety of shift
scenarios is the basis of value at risk (VaR). For VaR calculations, one gener-
ates a set of N shift scenarios to compute N potential future values. Focus-
ing on the statistics of the profit and loss of these scenarios, one can then
compute an estimated maximum loss level for a given level of confidence,
say 95%.

The shift scenarios can be based on historical movements, say daily
movements over the last three years giving rise to about 750 scenarios
(about 250 business days per year). Another method is to compute the mean
and covariance matrix of the term structure movements from historical
data and simulate N scenarios from a multivariate distribution—usually
Gaussian—using the empirical covariance matrix.
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EXERCISES

1. Using Table 7.3 and linear interpolation in discount factors
(a) Calculate the spot and quarterly forward 3-month simple (add-on)

rates, f ([Ti,Ti+1]) for T0 = 0,T1 = 3m, . . . ,T12 = 2y9m.
(b) Calculate the 2-year forward swap rate, 3-month forward with semi-

annual payments on the fixed leg.
(c) Calculate the value to the fixed-rate receiver of a $1M 3-month into

2-year forward swap with semiannual fixed rate of 3% per annum.
(d) What is the value of the above swap to the fixed-rate payer?

2. Using Table 7.3 and linear interpolation in discount factors, for a $1M
1-year swap with semiannual fixed rate of 4% per annum and quarterly
floating leg based on 3-month rates
(a) Compute the value of the semiannual fixed leg.
(b) Compute the value of the quarterly floating leg via discounting the

forward 3-month rates.
(c) Compute the value of the floating leg via replication.
(d) What is the value of the swap to the fixed-rate receiver?

3. Using the same setup as Example 2
(a) Compute today’s value of each of the four floorlets for a $1M 1-year

forward start 1-year K = 4% quarterly floor on 3-month rates.
(b) Compute today’s value to the payer of the fixed rate for a $1M 1-year

forward start 1-year swap with quarterly payments at the fixed rate
of 4% p.a.

(c) Using the above results, show that put-call parity holds: Cap - Floor
= Swap value to fixed rate payer.

4. Using the data in Table 7.3
(a) Compute the semiannual forward swap rate for a 1-year swap,

2-year forward, F2,1.
(b) Using Black’s normal formula with 𝜎N = 0.80%, compute the value

of a $1M 2 year into a 1-year ATMF payer swaption with semian-
nual fixed rate K = F2,1.

(c) Using Black’s normal formula with 𝜎N = 0.80%, compute the value
of a $1M 2 year into 1-year ATMF receiver swaption with semian-
nual fixed rate K = F2,1.

(d) Solve for the implied volatility 𝜎N if the market value of a $1M
2-year into 1-year semiannual payer swaption with K = 5% p.a. is
$5,000.

5. Let R,P be the value of a European receiver, payer swaption with the
same expiry, swap term, and strike K.
(a) Let S be the value to the receiver of the underlying swap with

fixed rate K. Prove put-call parity for European-style swaptions:
R − P = S.
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(b) Using Table 7.3, calculate the value to the fixed-rate receiver of a
$1M 1 year into 2-year forward swap with semiannual fixed rate of
4% per annum.

(c) Using the results of Example 3, show that put-call parity holds.
6. Using the Black’s normal call formula

(a) Show that the delta of a call option, 𝜕C(0)∕𝜕A(0), equals N(d).
(b) Using put-call parity, compute the delta of a put option.
(c) What is the delta of an ATMF call?
(d) What is the delta of an ATMF call when using BSM’s lognormal

formula?
7. Consider an ATMF straddle’s price under lognormal and normal dynam-

ics, and use the first central difference approximation

N′(x) × x ≈ N(x∕2) − N(−x∕2)

to relate the normalized volatility to lognormal volatility

𝜎N ≈ 𝜎 × F

8. Using the example in Figure 7.7 and the results in Table 7.5
(a) Show the computations for the T1 discount factor curves in each of

the (u,d) states starting from the T2 discount factor curves.
(b) Show the computation for the Arrow-Debreu prices of the three T2

states (uu,ud,dd) from the T1 AD prices.
(c) Calculate the semiannual 1-year CMS (par swap) rate in each of the

(u,d) states at T1.
(d) Calculate today’s value of a $1M European-style 6 month into 1-year

payer swaption with semiannual fixed rate of 4% per annum.
9. A European cancelable swap allows the owner to cancel a swap at some

point before the swap maturity. The cancellation option is economically
equivalent to a European swaption into an offsetting remaining swap,
and the value of the cancelable swap is a swap plus the cancellation
option. Using DFs in Table 7.3, and 1 year into 2-year swaption volatility
𝜎N = 1.20%, consider a 3-year swap with semiannual fixed rate of K per
annum.
(a) Solve for K so that today’s value of the swap is 0, that is, the 3-year

semiannual par swap rate.
(b) The fixed rate payer in the above swap has the option to cancel the

swap in 1 year. The cancellation option is economically equivalent
to a 1 year into 2-year receiver swaption with strike K. Solve for K
that would make today’s value of the cancelable swap 0. Is K above
or below the 3-year par swap rate?
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(c) The fixed-rate receiver in the above swap has the option to cancel the
swap in 1 year. The cancellation option is economically equivalent
to a 1 year into 2-year payer swaption with strike K. Solve for K that
would make today’s value of the cancelable swap 0. Is K above or
below the 3-year par swap rate?

10. A Bermudan cancelable swap allows the owner to cancel a swap at some
point before the swap maturity. The cancellation option is economically
equivalent to a Bermudan swaption into an offsetting swap. Using the
same setup as Example 3, consider a 2-year swap with semiannual fixed
rate of K per annum.
(a) Solve for K so that today’s value of the swap is 0, that is, the 2-year

par swap rate.
(b) The fixed-rate payer in the above swap has the Bermudan option

to cancel the swap in 6 months, 1 year, or 1.5 years. The cancel-
lation option is economically equivalent to a 6 month into 2-year
Bermudan receiver swaption with strike K. Solve for K that would
make today’s value of the cancelable swap 0. Is K above or below
the 2-year par swap rate?

(c) The fixed-rate receiver in the above swap has the option to cancel
the swap in 6 months, 1 year, or 1.5 years. The cancellation option is
economically equivalent to a 6 month into 2-year Bermudan payer
swaption with strike K. Solve for K that would make today’s value
of the cancelable swap 0. Is K above or below the 2-year par swap
rate?
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A.1 CALCULUS AND DIFFERENTIATION RULES

For a given function f (x), its derivative, f ′(x) = df (x)∕dx, is defined as

d
dx

f (x) = f ′(x) = lim
h→0

f (x + h) − f (x)
h

For a constant c, if f (x) = c, f ′(x) = 0 and (c × f )′(x) = c × f ′(x). For two
given functions f (x), g(x), the following relations hold:

1. Product Rule: (f × g)′ = f ′ × g + g′ × f
2. Quotient Rule:

(
f
g

)′
=

f ′ × g − g′ × f

g2

3. Chain Rule: Let h(x) = f (g(x)) = (f ∘g)(x). Then

h′(x) = f ′(g(x)) × g′(x)

4. Power Rule, Exponential, Logarithm

dxn

dx
= nxn−1 (n ≠ 0), d

dx
ex = ex,

d
dx

ln(x) = 1
x

5. L’Hôpital’s Rule: Subject to some regularity conditions, given two func-
tions f , g, if their ratios in the limit results to an indeterminate form

lim
x→a

f (x)
g(x)

= 0
0

or lim
x→a

f (x)
g(x)

= ±∞
±∞

then

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

217
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A.1.1 Taylor Series

The Taylor Series expansion of a function f (x) around x is given by

f (x + Δx) = f (x) + f ′(x)Δx + 1∕2f ′′(Δx)2 + . . . + 1
n!

f (n)(x)(Δx)n + . . .

where f (n)(x) is the nth derivative of the function. Similarly, a function of
n variables can be Taylor-expanded by considering all the single and mixed
partial derivatives

Δf (x1 + Δx1, . . . ,xn + Δxn) =
n∑

i=1

𝜕f
𝜕xi

Δxi

+1∕2
n∑

i,j=1

𝜕f
𝜕xi

𝜕f
𝜕xj

(Δxi)(Δxj)

+ . . .

A.2 PROBABILITY REVIEW

A random variable is a real-valued function whose value is based on the
outcome of random phenomena. For example, assigning numerical values
to each potential outcome of a coin flip, say 1 for heads and 0 for tails,
gives rise to a random variable X with two possible values (0,1) each with
probability 1/2, written as

P[X = 0] = Prob(Coin toss is Tails) = Prob({T}) = 1∕2

P[X = 1] = Prob(Coin toss is Heads) = Prob({H}) = 1∕2

We can flip the coin a second time, and create a new random variable, Y

P[Y = 0] = Prob(Second coin toss is Tails) = 1∕2

P[Y = 1] = Prob(Second coin toss is Heads) = 1∕2

Depending on how the random phenomena are related, we can calculate
probabilities such as

P[X = Y = 1] = Prob({H,H})
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If the two coin tosses are unrelated, then we have independent random
variables X,Y and the joint probabilities are the product of each random
variable’s probability

P[X = i,Y = j] = P[X = i] × P[Y = j] = 1∕2 × 1∕2 = 1∕4 (i, j = 0,1)

The probability of a collection of mutually exclusive outcomes is the sum of
the probabilities, so

P[X + Y = 1] = Prob({(H,T)} or {(T,H)})

= Prob({(H,T)}) + Prob({(T,H)})

= (1∕2)(1∕2) + (1∕2)(1∕2) = 1∕2

A.2.1 Density and Distribution Functions

In general, a random variable X can take on a multiple—even infinite—number
of values. For random variables that take on discrete values, say (x1,x2, . . . ),
their collection of respective probabilities (p1,p2, . . . )

P[X = xi] = pi > 0,
∑

i

pi = 1

is known as the probability mass function (pmf).
Random variables are generally categorized according to their type of

pmf. The simplest pmf, the Bernoulli distribution, is a generalization of the
coin toss random variable

(0 ≤ p ≤ 1) P[X = 1] = p,P[X = 0] = 1 − p

which can be thought of as the result of tossing a weighted (loaded)
coin. A random variable X having the Bernoulli distribution is written as
X ∼ b(1,p).

A sequence of n Bernoulli random variables gives rise to a binomial ran-
dom variable, written as Y ∼ b(n,p)

(k = 0,1, . . . ,n) P[Y = k] =
(n

k

)

pk(1 − p)n−k,

(n
k

)

= n!
k!(n − k)!

This is the generalization of tossing n loaded coin tosses. Using combina-
torics, one can show that if X1,X2, . . . ,Xn are independent and identically
distributed (i.i.d.) where each Xi ∼ b(1,p), then their sum Y =

∑n
i=1 Xi is a

binomial random variable, Y ∼ b(n,p).
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Random variables that can take on a continuum of values are known as
continuous random variables, and are described via their probability density
function (pdf). A continuous random variable X with pdf fX is written as
X ∼ fX, where

P[x1 ≤ X ≤ x2] = ∫

x2

x1

fX(x)dx

i.e., probability of X is computed as the area under the curve fX. The total
area under the pdf has to be 1

∫
fX(x)dx = 1

similar to the condition
∑

ipi = 1 for discrete random variables.
For any random variable X, its cumulative distribution function (CDF),

FX(x) is defined as
FX(x) = P[X ≤ x]

For a continuous random variable X, its pdf fX(x) is the derivative of its CDF

d
dx

FX(x) =
d
dx ∫

x

−∞
fX(u)du = fX(x)

A.2.2 Expected Values, Moments

The mean or expected value of a continuous random variable X with density
fX(⋅) is defined as

E[X] =
∫

xfX(x)dx

For a discrete random variable, the expected value is

E[X] =
∑

i

xiP[X = xi] =
∑

i

xipi

In general, for any function g(⋅) of a random variable X, its mean is defined as

E[g(X)] =
∫

g(x)fX(x)dx

or
E[g(X)] =

∑

i

g(xi)P[X = xi] =
∑

i

g(xi)pi

for discrete random variables.
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The variance or the second central moment of a random variable is
defined as

Var(X) = E[(X − E[X])2] = E[X2] − (E[X])2.

The square root of variance is called the standard deviation and is usu-
ally denoted by 𝜎X =

√
Var(X).

Two random variables X, Y are said to be independent, if

E[f (X) × g(Y)] = E[f (X)] × E[g(Y)],

for any arbitrary functions f , g. For independent random variables, their
variances—not their standard deviations—add up

Var(X + Y) = Var(X) + Var(Y)

The covariance of two random variables X,Y is defined as

Cov(X,Y) = E[(X − EX)(Y − EY)]

= E[XY] − E[X]E[Y]

while the correlation is the covariance normalized by the standard
deviations:

𝜌 = 𝜌X,Y = Corr(X,Y) = E[(X − EX)(Y − EY)]
√

Var(X)
√

Var(Y)

= E[XY] − E[X]E[Y]
𝜎X𝜎Y

If two random variables X,Y are independent, then they are uncorrelated
𝜌X,Y = 0.

The variance of a linear combination of random variables, Y =
∑N

i=1 aiXi, is related to the covariances as follows

Var(Y) =
N∑

i,j=1

aiajCov(Xi,Xj) = aTCa

where a is a columun vector consisting of ai’s, aT its transpose, and C is the
covariance matrix, Cij = Cov(Xi,Xj).
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A.2.3 Conditional Probability and Expectation

The conditional probability of an event A given B, P[A|B], is defined as

P[A|B] = P[A,B]∕P[B]

Given two discrete random variables X,Y, the law of total probability states

P[X = xi] =
∑

j

P[X = xi,Y = yj]

=
∑

j

P[X = xi|Y = yj]P[Y = yj]

The conditional expectation of a random variable X given another random
variable Y is a random variable defined as

E[X|Y] =
∑

i

xiP[X = xi|Y = yj]

for discrete random variables. One can recover E[X] from conditional expec-
tation E[X|Y] via the law of iterated expectation

E[X] = E[E[X|Y]]

=
∑

j

E[X|Y]P[Y = yj]

=
∑

j

∑

i

xiP[X = xi|Y = yj]P[Y = yj]

=
∑

i

xi

∑

j

P[X = xi,Y = yj]

=
∑

i

xiP[X = xi]

The analogous versions of the above for continuous random variables are
based on the conditional density function defined as

fX|Y(x|y) =
fX,Y(x, y)

fY(y)

leading to

fX(x) = ∫y
fX,Y(x, y)dy =

∫y
fX|Y(x|y)fY(y)dy
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and
E[X|Y] =

∫x
xfX|Y(x|y)dx

and

E[X] = E[E[X|Y]]

=
∫y

(

∫x
xfX|Y(x|y)dx

)

fY(y)dy

=
∫x

x
(

∫y
fX,Y(x, y)dy

)

dx

=
∫x

xfX(x)dx

A.2.4 Jensen’s Inequality

A function f is said to be convex if for any for x < y and 0 ≤ w ≤ 1 the
following holds

f (wx + (1 − w)y) ≤ wf (x) + (1 − w)f (y)

Jensen’s Inequality: if f is a convex function, then E[f (X)] ≥ f (E[X]).

A.2.5 Normal Distribution

The most important and commonly encountered continuous random vari-
able is a normal, or Gaussian characterized by two parameters 𝜇, 𝜎. Specif-
ically, the pdf of a normal random variable X ∼ N(𝜇, 𝜎2) is the bell-shaped
curve

X ∼ N(𝜇, 𝜎2) ⇐⇒ fX(x) =
1

√
2𝜋𝜎2

e
− (x−𝜇)2

2𝜎2

For an N(𝜇, 𝜎2) random variable, its mean is 𝜇, its variance is 𝜎2, and its
standard deviation is 𝜎.

A standard normal random variable has parameters (𝜇 = 0, 𝜎2 = 1),
X ∼ N(0,1), and its CDF

N(x) = P[N(0,1) ≤ x] =
∫

x

−∞

1
√

2𝜋
e−

u2

2 du

is widely available in many scientific and engineering numerical packages.
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68.3% Prob

95.5% Prob

99.7% Prob

μ – 3σ μ + σ μ + 3σμ + 2σμ – 2σ μ – σ μ

FIGURE A.1 Probability density function of a normal N(𝜇, 𝜎2) random variable.

The standard normal N(0,1) is the building block for other normal ran-
dom variables. Starting with a standard normal X ∼ N(0,1), for any given
parameters (𝜇, 𝜎2), the random variable Y = 𝜇 + 𝜎X ∼ N(𝜇, 𝜎2), i.e., any
normal random variable can be obtained by scaling and shifting an N(0,1)
random variable.

For standard normal random variable, its pdf is N′(x) = 1
√

2𝜋
e−x2∕2.

Note that N′(⋅) is symmetric: N′(x) = N′(−x), resulting in

P[N(0,1) ≥ x] = 1 − P[N(0,1) ≤ −x] = 1 − N(−x)

P[|N(0,1)| ≤ x] = 1 − 2N(−x) for x ≥ 0

A.2.6 Central Limit Theorem

Let Xi be independent, identically distributed random variables with mean
𝜇 and variance 𝜎2. Then

lim
n→∞

1
√

n

n∑

i=1

Xi − 𝜇

𝜎
∼ N(0, 1)

This is one version of the central limit theorem, which essentially states the
distribution of an average of any distribution converges to a normal distri-
bution.
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A.3 LINEAR REGRESSION ANALYSIS

It is often the case when looking at time series of financial data that they
seem to be related and one set of variables seem to drive others. The stan-
dard method to extract this relationship is via regression analysis where one
or more dependent variables are expressed as functions of independent or
explanatory variables with some added noise. When the functional form is
linear, we have linear regression analysis.

In the simplest and most common case, given two time series

{(x1, y1), . . . , (xN, yN)}

we write
yi = b0 + b1xi + ei

for two constant parameters, intercept b0 and slope b1. In this setup,
{x1, . . . ,xN} is called the independent or explanatory variable, {y1, . . . , yN}
the dependent variable, and the difference ei = yi − (b0 + b1xi) the residual.
The constant but unknown parameters b0,b1 are commonly estimated
using the least squares method by minimizing

min
b0,b1

∑

i

e2
i = [yi − (b0 + b1xi)]2

resulting in

b̂1 =
∑

i(xi − x)(yi − y)
∑

i(xi − x)2

b̂0 = y − b̂1x

R2 =
(xy − xy)2

(x2 − x2)(y2 − y2)

where b̂0, b̂1 are the random estimates of b0,b1, and the overbar notation
denotes arithmetic average

z = 1∕N
N∑

i=1

zi, zi = xi, yi,x
2
i , y

2
i ,xiyi

The variable R2 is called the coefficient of determination, and the higher it
is, the smaller the residuals, i.e., the closer we are to a straight line.
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It can be shown that the arithmetic mean of the residuals is zero and
they are uncorrelated to xi’s

e = 0, xe = 0

A.3.1 Regression Distributions

The following distributions arise if the residuals are assumed to be indepen-
dent and jointly normal.

Chi-square distribution. Let X1,X2, . . . ,Xn be i.i.d. random variables,
Xi ∼ N(0,1), and let Sn =

∑n
k=1 X2

k
. Then Sn has a chi-square distribution

with n degrees of freedom, Sn ∼ 𝜒2(n) with pdf

(x ≥ 0) fSn
(x) = xn∕2−1e−x∕2

2n∕2Γ(n∕2)

where

Γ(z) =
∫

∞

0
xze−xdx

It can be shown that Γ(z + 1) = zΓ(z),Γ(1) = 1,Γ(1∕2) =
√
𝜋, therefore

Γ(n) = (n − 1)! and

Γ(n∕2) = (n∕2 − 1)(n∕2 − 2) . . . (1∕2)
√
𝜋

F distribution. Let X,Y be independent 𝜒2 random variables,
X ∼ 𝜒2(m),Y ∼ 𝜒2(n). The random variable F = (X∕m)∕(Y∕n) is said
to have F distribution with (m,n) degrees of freedom, F ∼ F(m,n) with pdf

f (x) =
Γ((m + n)∕2)
Γ(m∕2)Γ(n∕2)

m
n

(m
n

x
)m∕2−1(

1 + m
n

x
)−(m+n)∕2

F-statistic. Define the F-statistic as

F0 =
∑

i(yi − y)2 −
∑

ie
2
i

∑
ie

2
i ∕(N − 2)

If ei’s are jointly normal i.i.d. random variables, ei ∼ N(0, 𝜎2), then
F ∼ 𝜒2(1,N − 2), and the F-statistic can be used in Analysis of Variance
(ANOVA) to test the null hypothesis that a constant (intercept-only) model
would have sufficed, i.e., xi’s do not aid in explaining the variance of yi’s:

H0 ∶ {b1 = 0} ∼ P[F(1,N − 2) > F0]
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A high enough value of the F-statistic would allow us to reject the null
hypothesis at a given level of significance and conclude that xi’s do have
explanatory power and reduce the variance.

Student’s t distribution. Let X,Y be independent random variables with
X ∼ N(0,1), Y ∼ 𝜒2(n). Then T = X∕

√
Y∕n is said to have a Student’s t dis-

tribution with n degrees of freedom, T ∼ t(n) with pdf

fT(t) =
Γ((n + 1)∕2)
Γ(n∕2)

√
n𝜋

(

1 + t2

n

)−(n+1)∕2

T-Statistics. Define

SE2(Intercept) =
∑

ie
2
i

N − 2

(
1
N

+ x2

∑
i(xi − x)2

)

, TIntercept =
b̂0

SE(Intercept)

SE2(Slope) = 1
N − 2

∑
ie

2
i

∑
i(xi − x)2

, TSlope =
b̂1

SE(Slope)

If ei’s are jointly normal i.i.d. random variables, ei ∼ N(0, 𝜎2), then both
TIntercept,TSlope statistics are t(N − 2) random variables and can be used to
test the null hypothesis that slope or intercept are zero

H0 ∶ {b0 = 0} ∼ P[t(N − 2) > TIntercept]

H0 ∶ {b1 = 0} ∼ P[t(N − 2) > TSlope]

A high enough value of T-statistic would allow us to reject the null
hypothesis that the particular coefficient is zero and we can conclude that the
coefficient does have explanatory power at the desired level of significance.
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APPENDIX B
Useful Excel Functions

1. TODAY - Today’s date.
2. EDATE - The date of “n” months after a given date.
3. PRICE - Clean Price of a coupon bond. Use “1” as the last argument

([basis]) for Act/Act day count.
4. YIELD - Yield of a coupon bond given its Clean Price. Use “1” for

Act/Act.
5. COUPPCD, COUPNCD - Dates of the previous, next coupon payment

dates. Useful in calculating the accrued fraction w.
6. COUPNUM - Number of remaining coupons.
7. PMT - Periodic payments of a level pay loan.
8. GOAL SEEK tool (Alt-T-G), usually under ’Data’ Tab (under What-If

Analysis in some versions of Excel).
9. MMULT - Matrix multiplication.

10. MINVERSE - Matrix inverse.
11. RAND - Random number in [0,1].
12. NORMSDIST - Cumulative distribution function of a standard N(0,1)

random variable.
13. NORMSINV - Inverse of CDF of an N(0,1) random variable. Combined

with RAND, can be used to generate N(0,1) random samples.
14. STDEV - Sample standard deviation:

√
1∕(n − 1)

∑
(xi − x)2.

15. STDEVP - Population standard deviation:
√

1∕n
∑

(xi − x)2.
16. REGRESSION tool - From “Data Analysis” dialog box (in “Data” tab

in new versions of Excel).
17. INTERCEPT, SLOPE - Least squares intercept and slope of two series.

229
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About the Companion Website

This book is accompanied by a companion website for instructors:

www.wiley.com/go/sadr/mathtechniquesinfinance

The website includes:

■ Solutions to all end-of-chapter problems.
■ Jupyter notebooks with full Python code for all end-of-chapter projects.
■ Multiple-choice questions for quizzes and exams.
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absolute risk aversion (ARA), 63, 64
accrued fraction, 14
allocation, 5, 65, 78, 86, 93, 94
American style option, 167–170
annuity, 17–18, 21, 24, 199
annuity formula, 24
antithetic sampling, 171
arbitrage, xv, 11–12, 58, 85–87, 116–119,

130–132, 140, 151, 162, 166, 168, 188
arbitrage pricing theory (APT), 85–87, 94
arithmetic moving average, MA, 47, 48
Arrow-Debreu security, 206
Asian option, 171
asset allocation, 65
at-the-money-forward (ATMF), 150–152
at-the-money spot (ATM), 150, 151, 155,

160
average age, 47
Average Life (AL), 31

backwardation, 113
backward induction, xvi, 169–170,

180–182, 209
basis, xiv, 110, 213
Bermudan style option, 171
Bermudan swaption, xvi, 208–210
beta, xv, 83–86, 88, 93
bisection method, xiv, 21–22, 43
Black76, 152
Black-Scholes-Merton (BSM), xvi, 127, 143,

145–154, 156, 157, 161–165, 167,
171–173, 179–181

bold play, 99
bond

accrued interest, 19
clean price, 16
dirty price, 15, 16
discount, 15, 16
par, 24
premium, 15, 16

bond convexity, 25
bootstrap method, 37, 39, 46, 51–53, 187,

212
Brownian motion (BM), xiii, xvi, 143–146,

165, 171, 194, 203, 204
bucketed PV01, 213
bump and revalue, 212

calibration, 206, 212
call option, 125–127, 130, 134, 149–152,

154–156, 158, 159, 163, 164, 167–169,
172, 184, 215

call sprea, 153
cancelable swap

Bermudan, 216
European, 215

capital asset pricing model (CAPM), xv,
81–85, 87, 93, 94

capital market line (CML), 79–84, 93, 94,
106

caplet, 196
cash and carry, xv, 111, 113, 116, 117, 119,

125
central difference, 28
certainty-equivalent, xv, 61–62
characteristic equation, 98
collar, 153
complete market, 140
compound lottery, 59, 60
conic section, 68
constant absolute risk aversion (CARA), xv,

64
constant elasticity of variance (CEV), 173
constant maturity swap (CMS), xvi, 200
constant prepayment ratio (CPR), 32
constant relative risk aversion (CRRA), xv,

64
contango, 113
contingent claim, xv, xvi, 109, 125–128,

137–140, 143, 149, 161–163, 166, 172,
194, 206–208
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control variate, 172
convex function, 25, 157, 223
convexity, xiv, 24–27, 34–35, 41, 156, 159,

160, 193, 200
convexity adjustment, 200
convolution, 155
coupon effect, 46
covered interest rate parity, xv
Cox-Ross-Rubinstein (CRR), xvi, 127,

164–167, 170, 171, 180, 181
curse of dimensionality, 171

day count
30/360, 19, 20
Act/365, 14, 19, 20
Act/365 NL, 19, 20
Act/Act Bond, 20
Act/Act ISDA, 20

day-count convention, 19
diffusion, xvi, 144, 161–165, 173, 182, 203
digi-call, 153, 154
digi-put, 153, 154
digitals, 153
discount factor (DF), xvi, 9–10, 12, 13, 17,

36–39, 46, 52, 53, 118, 119, 187–189,
191, 192, 197, 199, 201, 203, 204,
206–212

discount factor curve, xvi, 10, 36, 37, 39,
119, 187, 188, 191, 192, 206, 207,
209–212

discounting the forward, 193, 200
diversifiable risk, 84–85
dividend yield, xv, 113, 117
dominated asset, 101
duration, xiv, 7, 8, 97

efficient frontier, 75–76, 79, 82, 84, 91–93
efficient market hypothesis, 95
eigenvalue, 89, 90
eigenvector, 89, 90
equal risk parity (ERP), 104, 105
European-style, 125–127, 152–154, 161,

171, 194, 196, 200, 202
exponential moving average (EMA)

N-period, 47, 48
exponential utility, 92

factor loading, 85, 88
factor model, xv, 85, 87, 88
feasible portfolio, xv, 68, 69, 76, 78, 82, 102

Fiono, 234
fixed leg, 190, 192, 193, 196
flattening, 40, 41
floating leg, 190, 191, 193, 194, 196
floating rate, 189, 193, 194, 198, 212
floorlet, 197
fly, 153
forward contract, xv, 109–112, 114–117,

121, 125
forward curve, 112–114, 211
forward induction, xvi, 206
forward par swap rate, 193
forward price, xv, 110–117, 120, 130, 140,

143, 150, 200
forward rate

continuous compounding, 119
instantaneous, 120
simple, 119, 120, 188, 196

forward rate curve, 187–189, 201, 211
frontier portfolio, 76
future value (FV), 7–10, 42, 64, 84, 111,

117, 141, 213

gambler’s ruin, xv, 97, 98
geometric Brownian motion, 145–147
geometric series, xiv, 43, 45
Greeks

Delta, xvi, 156, 157, 167
Gamma, xvi, 156, 157, 167
Theta, xvi, 156, 157, 167
Vega, 156, 157

heat equation, xvi, 163–165
hedging, xvi, 110, 134–135, 159, 160, 173
Hull-White model, 202–205
hyperbola, xv, 68, 71, 78, 79, 81
hyperbolic absolute risk aversion (HARA),

xv, 64

implied volatility, 154–155, 173, 178
indifference curve, 90–92, 112
integrating factor, 203
interest

add-on, 119, 201
amount, 7, 10, 30, 71
annualized, 7
compound, xiv, 8–10, 30, 111, 113, 119,

120, 129, 141, 147, 150
compounding effect, 8
continuous, 9, 111, 113, 119, 129, 147,

150
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non-compounding, 8, 9
periodic rate, 46
rate, xv, xvi, xiv, 5, 7–12, 19, 20, 23, 28,

31, 34, 41, 71, 88, 111, 113, 116–120,
128, 129, 139, 140, 147, 150, 187–213

simple, 7, 9–12, 117–120, 202
interest on interest, 8
interest rate cap, 196
interest rate differential, 118
interest rate floor, 196, 204, 206
interest rate swap, xvi, 5, 189–194
internal rate of return (IRR), 10–11
interpolation method, xiv, 37–39, 46
intrinsic value, 156, 169
iterated expectation, 135, 137, 222
Ito integral, 162

Jensen’s alpha, 94
jump-diffusion process, 173

Kelly ratio, xv, 98, 99
knock-in option, 171
knock-out option, 171

Lagrange function, 72, 73
Lagrange multiplier, xv, 71, 73, 76, 102
Lagrangian, 76, 102
level pay loan, 5, 28–35
linear interpolation, 38, 39, 197
log-linear interpolation, 46
log normal, 143, 145–148, 163, 165, 173,

178, 194, 203
lookback option, 171
loss aversion, 58
lottery, xv, 56, 59–61, 63, 155
lottery ticket, 58, 155

market portfolio, xv, 79–81, 83, 85, 93, 94,
102

Markov process, 143
Markowitz bullet, 68, 69, 79
mark-to-market, 115–117
martingale, xvi, 138, 140, 143, 144, 201
mean-reversion, 95, 202–204, 211
mean reversion level, 203, 204, 211
mean-reversion speed, 202–204
minimum variance frontier (MVF), xv,

76–78, 106
minimum variance portfolio (MVP), xv,

68–71, 73, 75, 77, 79

modified duration, 23, 24
money market account, 137–139, 201–202
Monte Carlo simulation, xvi, 171, 182
mortgage-backed security (MBS), xiv, 32

negative convexity, xiv, 34–35
Newton-Raphson method, xiv, 21, 22
non-negative definite, 89
notional, 18, 189, 190

option contracts, 125
Ornstein-Uhlenbeck process, 202
orthonormal, 89

pairs trading, xv, 95–97
parabolic utility, 91–92
parallel PV01, 212
parallel shift, 40, 213
par swap rate, 191–194, 198–200, 212
pass-through, 32–34
path discounting, 202, 206
pip, 106, 118, 179
portable alpha, 88
positive carry, 122
prepayment, xiv, 23, 32–35
prepayment risk, 23
present value (PV), 9–11, 13, 15, 23, 151,

169, 190
price-yield formula, xiv, 12–21, 23, 25, 48,

200, 212
principal

notional, 18
principal component analysis (PCA), xv, 88,

89
prospect theory, 58
pull-to-par effect, 16
pure security, 206–208
put-call parity, 151–153, 169, 179, 196
put option, 126, 127, 151, 152, 158, 159,

165, 169, 173, 178, 179
put spread, 153
PV01, 23–27, 40, 193, 212, 213
PVBP, 23–24

random process, 138, 143, 144, 202
random walk, xvi, 138, 139, 143–145, 147,

171, 172
ranking, xv, 58–61, 63, 64
recurrence equation, xv, 98
relative prices, xvi, 65, 137–140
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relative risk aversion, 63, 64
return, xv, xvi, 10–11, 48–53, 55, 59, 64–72,

75–82, 84–90, 92–95, 99, 143, 145, 146,
154, 156, 171, 173, 180–184, 194, 201

rich/cheap analysis, 39–40
risk, ii, xiii, xiv, xv, xvi, 4, 5, 11, 12, 22–28,

40, 41, 55, 57–59, 61, 62, 66–67, 69,
75–77, 80, 82–85, 90, 97, 107, 111,
115–117, 131–132, 138, 139, 143, 153,
166, 212–213

risk-aversion, xv, 58, 61, 62
risk-neutral, xv–xvi, 58, 59, 75, 127, 131,

132, 135–140, 147, 149, 155, 171, 183,
194, 195, 200–202, 206

risk-neutral density function, 155
risk-neutral measure, 140
risk-neutral probability, 132, 135–138, 151
risk-neutral valuation, 125–140, 143, 156,

171, 194, 200–202
risk premium

absolute, 62, 63
relative, 62

risk-reversal, 153
risk-taking, xv
root search, 21–22
rule of 72, 42

scenario PV01, 213
security market line (SML), 103
self-financing, xvi, 134–135, 140, 151, 156,

201
self-reference, 236
settlement

cash, financial, 112
physical, 112

short rate, xvi, 201–206, 208, 210–212
short sale, 71
simulation noise, 171
single monthly mortality (SMM), 32
skew, 155, 173
smart beta, 88
smile, 155, 173
specific risk, 85
speculation, xiii, 4, 5, 110
spot price, 110, 112, 114, 116
spot transaction, 109, 110
stochastic discount factor, 201, 203
stochastic volatility, 173
St Petersburg paradox, xv, 56
straddle, 153, 154

strangle, 153, 154
strike, 125, 126, 129, 149–153, 155, 156,

158, 160, 164, 167–169, 173, 196–199
swaption

payer, 197–199, 210
receiver, 197–199, 210

systematic risk, 83–85

Taylor series, xiv, 25–27, 167, 218
term structure model, 211, 212
time decay, 156, 159, 160
time value, xiv, 7, 156, 159
treasury

bills, 20, 79
bonds, 3, 20, 36
notes, 20

Treynor’s ratio, 94
two fund theorem, 78

uncertainty, xv, 55–59, 66, 79, 109, 110
underlying, xv, xvi, 32, 64, 109–113, 116,

125, 127, 135–138, 143, 145, 146, 149,
151–153, 155–160, 166, 168–171, 173,
184, 194, 201, 210, 212

undominated, 76
utility, xv, 56, 60–64, 90–93
utility theory, xv, 56–64, 90

value at risk (VaR), xvi, 213
variance reduction, xvi, 171, 172, 184
Vasicek model, 203
volatility

normal, 195

yield
add-on, 11, 208
bond equivalent, 46, 47
compounding, 18
continuous, 11, 117
discount, 11, 20
simple, 11

yield carry, 122
yield curve, xvi, 36–41, 208, 211, 213
yield curve inversion, xvi, 208, 211
yield to maturity (YTM), 11, 15, 24, 30, 36,

212

zero coupon bond, xvi, 17, 18, 20, 39, 187,
191, 201, 203, 204, 206

zero curve, 187–188
Z-score, 95, 97
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